Revista Integración, temas de matemáticas.
Vol. 39 No. 1 (2021): Revista integración, temas de matemáticas
Research and Innovation Articles

The dual of the reflection of a topological group.

Adriana C. Castillo
University Cartagena
Julio C. Hernández A.
University Cartagena

Published 2021-05-19

Keywords

  • Dual groups,
  • topological groups,
  • reflections

How to Cite

Castillo, A. C., & Hernández A., J. C. (2021). The dual of the reflection of a topological group. Revista Integración, Temas De matemáticas, 39(1), 23–40. https://doi.org/10.18273/revint.v39n1-2021002

Abstract

In this paper we present a study of the duality of a group via reflections. We begin with the demonstration of a necessary condition for the continuity of the dual homomorphism of the homomorphism that goes from the group to its reflection, that is, if φ: G → ξ(G), it follows that φb: ξ[(G) → Gb is a continuous bijection for T ∈ ξ, where ξ is a reflective subcategory of the category of topological groups and ξ(G) is the reflection of G. Once the previous condition is met, it is shown that Gb ∼= ξ[(G), when G is either a compact group or a topological group Čech complete with φ: G → ξ(G) surjective and open or a locally compact topological group and φ: G → ξ(G) is surjective and open.

In the case of the dual reflections of metrizable topological groups, we rely on a result of Chasco [5] which implies that when G is a metrizable abelian topological group and H is a dense subgroup of G, then the dual groups Gb and Hb are topologically isomorphic.

Downloads

Download data is not yet available.

References

  1. Arhangel’skii A.V. and Ponomarev V.I., Fundamentals of general topology, D. Reidel Publishing Co., Dordrecht, 1984.
  2. Arhangel’skii A.V. and Tkachenko M.G., Topological groups and related structures, Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Vol. I, Hackensack, NJ, 2008. doi: 10.2991/978-94-91216-35-0
  3. Aussenhofer L., Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups, Dissertationes Math. (Rozprawy Mat.), Varsovia, 1999.
  4. Casarrubias S.F. and Tamariz M.A., Elementos de Topología General, Soc. Mat. Mex., vol. 37, D.F., 2012.
  5. Chasco M.J., “Pontryagin duality for metrizable groups”, Archiv der Math, 70 (1998), No. 1, 22-28. doi: 10.1007/s000130050160
  6. Comfort W.W., Trigos F.J., Wu T.S., “The Bohr compactification, modulo a metrizable subgroup”, Fund. Math., 152 (1997), 97-98. doi: 10.4064/fm-63-1-97-110
  7. Deitmar A., A first course in harmonic analysis”, Springer-Verlag, 2nd ed., New York, 2005.
  8. Dikranjan D., Ferrer M.V. and Hernández S., “Dualities in topological groups”, Sci. Math. Jpn., 72 (2010), No. 2, 197-235.
  9. Dummit D.S. and Foote R.M., Abstract Algebra, 3rd ed., John Wiley & Sons, Inc., New York, 2004.
  10. Engelking R., General Topology, Heldermann Verlag, 2nd ed., vol. 6, Berlin, 1989.
  11. Ferrer M., Hernández S. and Uspenskij V., “Precompact groups and property (T)”, J. Math. Anal. Appl., 404 (2013), No. 2, 221-230. doi: 10.1016/j.jmaa.2013.03.004
  12. Gary M., “Teoría Clásica de Dualidad”, Tesis (M.Sc.), Universidad Autónoma Metropolitana, D.F., 2011, 52 p.
  13. Hernández C., Tkachenko M.G., Villegas L. and Rendón O., Grupos Topológicos, Universidad Autonoma Metropolitana Unidad Iztapalapa, México, 1997.
  14. Holm P., “On the Bohr compactification”, Matematisk Seminar, Universitetet i Oslo, No. 6, 1963.
  15. Holm P., “On the Bohr compactification”, Math. Ann, 156 (1964), 34-46. doi: 10.1007/BF01359979
  16. Morris S.A., Pontryagin duality and the structure of locally compact abelian groups, Cambridge University Press, Cambridge, New York, Melbourne, 1977.
  17. Shubin M.A., “Almost periodic functions and partial differential operators”, Uspehi Mat. Nauk, 33 (1978), No. 2, 3-47. doi: /10.1070/RM1978v033n02ABEH002303
  18. Simmons G.F., Introduction to topology and modern analysis, McGraw-Hill Book Co., Inc., New York, San Francisco, 1963.