Revista Integración, temas de matemáticas.
Vol. 39 No. 2 (2021): Revista Integración, temas de matemáticas
Research and Innovation Articles

Homoto-Homological Skeleton in the Category of Abelian Groups

Rafael Gaitan Ospina
Universidad del Valle, Departamento de Matemáticas, Cali, Colombia.

Published 2021-09-27

Keywords

  • Simplicial sets,
  • simplicial abelian groups,
  • homotopy,
  • homology,
  • homotopic system,
  • singular functor,
  • admissible categories,
  • model object
  • ...More
    Less

How to Cite

Gaitan Ospina, R. (2021). Homoto-Homological Skeleton in the Category of Abelian Groups. Revista Integración, Temas De matemáticas, 39(2), 137–176. https://doi.org/10.18273/revint.v39n2-2021002

Abstract

In this paper, we present the construction of a general homology theory in the category of abelian groups in the sense of the textbook Introducción a la Teoría de Homología General by R. Ruiz [22], to general categories, meeting axioms similar to those presented by Eilenberg and Steenrod in homology theories for admissible categories of topological pairs (X, A) [3]. We built this general homology theory in abelian groups through what we called Homoto-Homological Skeleton, showing the connections with monoidal categories and simplicial categories.

Downloads

Download data is not yet available.

References

  1. Artin E. and Braun H., Introduction to Algebraic Topology, Merrill Publishing Company, 1st ed., 1969.
  2. Bauer F.W. and Dugundji J., “Categorical homotopy and fibrations”, Trans. Amer. Math. Soc., 140 (1969), 239–256. doi:10.2307/1995135.
  3. Eilenberg S. and Steenrod N.E., “Axiomatic Approach to Homology Theory”, Proc. Natl. Acad. Sci. USA., 31 (1945), No. 4, 117–120. doi: 10.1073/pnas.31.4.117.
  4. Etingof P., et. al., Tensor Categories, American Mathematical Soc, vol. 205, Providence, 2016.
  5. Gabriel P. and Zisman M., Calculus of Fractions and Homotopy Theory, Springer Science & Business Media, vol. 35, New York, 2012.
  6. Goerss P.G. and Jardine J.F., Simplicial Homotopy Theory, Springer Science & Business Media, 2009.
  7. Gaitan R., “Esqueleto Homoto-Homológico En La Categoría De Los Grupos Abelianos”, Tesis (Ph.D.), Universidad del Valle, 2018, 112p.
  8. Hernández L.J., “Un ejemplo de teoría de homotopía en los grupos abelianos”, Collect. Math., 33, 161-176, 1982.
  9. Hatcher A., Algebraic topology, Cambridge University Press, 1st ed., 2002.
  10. Hovey M., Model categories, Mathematical Surveys and Monographs, vol. 63, 1999.
  11. Hungerford T.W., Algebra, Springer-Verlag, 1st ed., vol. 73, New York, 1974.
  12. Hu S.T., Homology Theory: a first course in Algebraic Topology, Holden-Day, 1st ed., 1966.
  13. Hernández L.J., “Un Ejemplo de Teoría de Homotopía en los Grupos Abelianos”, Tesis (Ph.D.), Universidad de Zaragoza, España, 1980, 232 p.
  14. Kan D.M., “Abstract Homotopy. I”, Proc. Natl. Acad. Sci. USA., 41 (1955), No. 12, 1092– 1096.
  15. Kan D.M., “Abstract Homotopy. II”, Proc. Natl. Acad. Sci. USA., 42 (1956), No. 5, 225– 228. doi:10.1073/pnas.42.5.255.
  16. Leinster T., Basic Category Theory, Cambridge University Press, 1st ed., vol. 143, 2014.
  17. MacLane S., Homology, Classics in mathematics, Springer-Verlag, Berlin, 1995.
  18. May P.J., Simplicial Objects in Algebraic Topology, University of Chicago Press, vol. 114, Chicago, 1992.
  19. Porter T. and Kamps K.H., Abstract Homotopy and Simple Homotopy Theory, World Scientific, 1st ed., Singapore, 1997.
  20. Ruiz R., “Overview on models in Homotopical Algebra”, Rev. Acad. Colombiana Cienc. Exact. Fís. Natur., 28 (2004), No. 106, 100–121.
  21. Ruiz R., “Change of Models in Algebraic Topology”, Thesis (Ph.D), Temple University, Pennsylvania, 1977, 311 p.
  22. Ruíz R., “Introducción a la teoría de homología general”, https://n9.cl/hdk6, [citado 4 de agosto 2021].
  23. Vick J.W., Homology Theory: an introduction to algebraic topology, Springer-Verlag New York, 2nd ed., vol. 145, New York, 1994.