Published 2021-10-08
Keywords
- (E,M)−category,
- initial lift,
- topological category,
- topological functor
How to Cite
Copyright (c) 2021 Revista Integración, temas de matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
In this paper, we describe a convenient categorical structure with respect to a class of monomorphisms M and epimorphisms E for any topological category. We show in particular that the structure that we introduce here, which is induced by topological functors and their initial liftings, allows the study of some M−coreflective subcategories of a topological category. We pay special attention to projective structures.
Downloads
References
- Adámek J., Herrlich H. and Strecker G.E., Abstract and Concrete Categories: The Joy of Cats, Wiley, New York, 1990.
- Castellini G., “Connectedness with Respect to a Closure Operator”, Appl. Categ. Structures., 9 (2001), No. 3, 285–302. doi: 10.1023/A:1011247621101.
- Clementino M.M., “On Connectedness via Closure Operators”, Appl. Categ. Structures., 9 (2001), No. 6, 539–556. doi: 10.1023/A:1012512306420.
- Dikranjan D. and Giuli E., “Closure operators I”, Topology Appl., 27 (1987), No. 2, 129–143. doi: 10.1016/0166-8641(87)90100-3.
- Dikranjan D. and Tholen W., Categorical Structure of Closure Operators, Springer Netherlands, 1st ed., vol. 346, Dordrecht, 1995.
- Freyd P., “Aspects of topoi”, Bull. Aust. Math. Soc., 7 (1972), No. 1, 1–76. doi: 10.1017/S0004972700044828.
- Herrlich H. and Strecker G.E., “Coreflective subcategories”, Trans. Amer. Math. Soc., 157 (1971), 205–226. doi: 10.1090/S0002-9947-1971-0280561-2.
- Herrlich H., “Reflexionen und Coreflexionen”, in Topologische Reflexionen und Coreflexionen (ed.Dold and Eckmann) Springer-Verlag Berlin (1968), 76–113.
- Herrlich H., “Limit-operators and topological coreflections”, Trans. Amer. Math. Soc., 146 (1969), 203–210. doi: 10.1090/S0002-9947-1969-0252473-2.
- Herrlich H., “Topological Functors”, Topology Appl., 4 (1974), No. 2, 125–142. doi: 10.1016/0016-660X(74)90016-6.
- Isbell J.R., “Subobjects, adequacy, completeness and categories of algebras”, Instytut Matematyczny Polskiej Akademi Nauk (Warszawa)., 36 (1964), 3–32.
- Kelly G.M., “Monomorphisms, epimorphisms, and pull-backs”, J. Aust. Math. Soc., 9 (1969), No. 1–2, 124–142. doi: 10.1017/S1446788700005693.
- MacLane S. and Moerdijk I., Sheaves in Geometry and Logic, Springer-Verlag, 1st ed., New York, 1994.
- Nakagawa R., “Chapter 14 categorical topology”, in Topics in General Topology (ed. Morita and Nagata.), Elsevier (1989), 563–623.