Revista Integración, temas de matemáticas.
Vol. 39 No. 2 (2021): Revista Integración, temas de matemáticas
Research and Innovation Articles

Induced (E,M)−structures on Topological Categories

Juan Angoa Amador
Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Físico Matemáticas, Puebla, México.
Agustín Contreras Carreto
Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Físico Matemáticas, Puebla, México.
Jesús González Sandoval
Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Físico Matemáticas, Puebla, México.

Published 2021-10-08

Keywords

  • (E,M)−category,
  • initial lift,
  • topological category,
  • topological functor

How to Cite

Angoa Amador, J., Contreras Carreto, A., & González Sandoval, J. (2021). Induced (E,M)−structures on Topological Categories. Revista Integración, Temas De matemáticas, 39(2), 241–256. https://doi.org/10.18273/revint.v39n2-2021006

Abstract

In this paper, we describe a convenient categorical structure with respect to a class of monomorphisms M and epimorphisms E for any topological category. We show in particular that the structure that we introduce here, which is induced by topological functors and their initial liftings, allows the study of some M−coreflective subcategories of a topological category. We pay special attention to projective structures.

Downloads

Download data is not yet available.

References

  1. Adámek J., Herrlich H. and Strecker G.E., Abstract and Concrete Categories: The Joy of Cats, Wiley, New York, 1990.
  2. Castellini G., “Connectedness with Respect to a Closure Operator”, Appl. Categ. Structures., 9 (2001), No. 3, 285–302. doi: 10.1023/A:1011247621101.
  3. Clementino M.M., “On Connectedness via Closure Operators”, Appl. Categ. Structures., 9 (2001), No. 6, 539–556. doi: 10.1023/A:1012512306420.
  4. Dikranjan D. and Giuli E., “Closure operators I”, Topology Appl., 27 (1987), No. 2, 129–143. doi: 10.1016/0166-8641(87)90100-3.
  5. Dikranjan D. and Tholen W., Categorical Structure of Closure Operators, Springer Netherlands, 1st ed., vol. 346, Dordrecht, 1995.
  6. Freyd P., “Aspects of topoi”, Bull. Aust. Math. Soc., 7 (1972), No. 1, 1–76. doi: 10.1017/S0004972700044828.
  7. Herrlich H. and Strecker G.E., “Coreflective subcategories”, Trans. Amer. Math. Soc., 157 (1971), 205–226. doi: 10.1090/S0002-9947-1971-0280561-2.
  8. Herrlich H., “Reflexionen und Coreflexionen”, in Topologische Reflexionen und Coreflexionen (ed.Dold and Eckmann) Springer-Verlag Berlin (1968), 76–113.
  9. Herrlich H., “Limit-operators and topological coreflections”, Trans. Amer. Math. Soc., 146 (1969), 203–210. doi: 10.1090/S0002-9947-1969-0252473-2.
  10. Herrlich H., “Topological Functors”, Topology Appl., 4 (1974), No. 2, 125–142. doi: 10.1016/0016-660X(74)90016-6.
  11. Isbell J.R., “Subobjects, adequacy, completeness and categories of algebras”, Instytut Matematyczny Polskiej Akademi Nauk (Warszawa)., 36 (1964), 3–32.
  12. Kelly G.M., “Monomorphisms, epimorphisms, and pull-backs”, J. Aust. Math. Soc., 9 (1969), No. 1–2, 124–142. doi: 10.1017/S1446788700005693.
  13. MacLane S. and Moerdijk I., Sheaves in Geometry and Logic, Springer-Verlag, 1st ed., New York, 1994.
  14. Nakagawa R., “Chapter 14 categorical topology”, in Topics in General Topology (ed. Morita and Nagata.), Elsevier (1989), 563–623.