Revista Integración, temas de matemáticas.
Vol. 40 No. 1 (2022): Revista Integración, temas de matemáticas
Research and Innovation Articles

Lie algebras whose Lie groups have negative sectional curvature

Gil Salgado
Universidad Autónoma de San Luis Potosí

Published 2022-03-01

Keywords

  • Lie algebras,
  • Riemannian Lie groups,
  • Sectional curvature

How to Cite

Salgado, G. (2022). Lie algebras whose Lie groups have negative sectional curvature. Revista Integración, Temas De matemáticas, 40(1), 87–97. https://doi.org/10.18273/revint.v40n1-2022005

Abstract

The aim of this work is to completely describe two families of Lie algebras whose Lie groups have negative sectional curvature. The first family consists of Lie algebras satisfying the following property: given any two vectors in the Lie algebra, the linear subspace spanned by them is a Lie subalgebra. On the other hand, the second family consists of reduced Lie algebras of Iwasawa type.

Downloads

Download data is not yet available.

References

  1. Azencott R. and Wilson E.N., “Homogeneous manifols with negative curvature. I”, Trans. Amer. Math. Soc., 215 (1976), 323-362. doi: 10.1090/S0002-9947-1976-0394507-4
  2. Barnet F., “On Lie groups that admit Left-invariant Lorentz metrics of constant sectional curvature”, Illinois J. of Math., 33 (1989), No. 4, 631-642. doi: 10.1215/ijm/1255988575
  3. Burde D. and Ceballos M., “Abelian ideals of maximal dimension for solvable Lie algebras”, J. Lie Theory., 22 (2012), No. 3, 741-756. arXiv:0911.2995
  4. Cairns G., Galić A.H. and Nikolayevsky Y., “Curvature properties of metric nilpotent Lie algebras which are independent of metric”, Ann. Global Anal. Geom., 51 (2017), No. 3, 305-325. doi: 10.1007/s10455-016-9536-y
  5. Gong M.P. “Classification of Nilpotent Lie algebras of Dimension 7 (Over Algebraically closed Fields and R)”, Thesis (Ph.D.), University of Waterloo, Canada, 1998, 165 p.
  6. Goto M., “Lattices of Subalgebras or Real Lie algebras”, J. Algebra., 11 (1969), 6-24. doi: 10.1016/0021-8693(69)90098-2
  7. Heintze E., “On homogeneous manifolds of negative curvature”, Math. Ann., 211 (1974), 23-34. doi: 10.1007/BF01344139
  8. Kolman B., “Semi-modular Lie algebras”, J. Sci. Hiroshima Univ. Ser. A-I., 29 (1965), 149-163. doi: 10.32917/HMJ/1206139231
  9. Milnor J., “Curvature of Left Invariants Metrics on Lie Groups”, Adv. Math., 21 (1976), No. 3, 293-329. doi: 10.1016/S0001-8708(76)80002-3
  10. Ndogmo J.C. and Winternitz P., “Solvable Lie algebras with abelian nilradicals”, J. Phys. A Math. Gen., 27 (1994), No. 2, 405-423. doi: 10.1088/0305-4470/27/2/024
  11. Reyes E., “On a Lie groups with constant negative sectional curvature”, Department of Mathematics, Southeastern Louisiana University.
  12. https://www2.southeastern.edu/Academics/Faculty/ereyes/KPjournalReyes.pdf [cited on 15 September, 2015].
  13. Uesu K., “A note on curvature of left invariant metrics on Lie Groups”, Memoirs of the Faculty of Science, Kyushu University, 35 (1981), No. 1, 83-85. doi: 10.2206/kyushumfs.35.83
  14. Wolf J.A., “Homogeneity and bounded isometries in manifolds of negative curvature”, Illinois J. Math., 8 (1964), No. 1, 14-18. doi: 10.1215/ijm/1256067453
  15. Wolter T.H., “Einstein Metrics on solvable groups”, Math. Zeitschrift, 206 (1991), No. 1, 457-471. doi: 10.1007/BF02571355