Revista Integración, temas de matemáticas.
Vol. 41 No. 1 (2023): Revista Integración, temas de matemáticas
Research and Innovation Articles

Coadjoint semi-direct orbits and Lagrangian families with respect to Hermitian form

Jhoan Sebastian Báez
Universidad nacional abierta y a distancia, ECBTI.
Luiz A.B. San Martin
Universidade estadual de Campinas, IMECC

Published 2023-02-20

Keywords

  • Coadjoint orbits,
  • Homogeneous spaces,
  • Lagrangian submanifolds,
  • Hermitian symplectic form

How to Cite

Báez, J., & San Martin, L. A. (2023). Coadjoint semi-direct orbits and Lagrangian families with respect to Hermitian form. Revista Integración, Temas De matemáticas, 41(1), 27–42. https://doi.org/10.18273/revint.v41n1-2023002

Abstract

We use the underlying structure of then coadjoint orbits of a semidirect product of a connected Lie group and a vector space to obtain families of Lagrangian submanifolds in the adjoint orbits of complex semisimple Lie groups with respect to the symplectic hermitian form. This construction is a generalization of a type of semi-direct orbit previously studied by the authors.

Downloads

Download data is not yet available.

References

  1. Baez, J. & San Martin, L.A.B.: Deformations of adjoint orbits for semisimple Lie algebras and Lagrangian submanifolds, Differential geometry and applications, 75, p. 101719, 2021.
  2. Bates, S. & Weinstein, A.: Lectures on the Geometry of Quantization. American Mathematical Soc., 8, 1997.
  3. Gasparim, E.; Grama, L. & San Martin, L. A. B.: Adjoint orbits of semisimple Lie groups and Lagrangian submanifolds. Proceedings Edinburgh Mathematical Society, 60(2), 361- 385, 2017.
  4. Gasparim, E.; Grama, L.; & San Martin, L.A.B.: Symplectic Lefschetz fibrations on adjoint orbits. Forum Mathematicum, 28 (5), 2016.
  5. Gasparim, E. & San Martin, L.A.B.: Morse functions and Real Lagrangian Thimbles on Adjoint Orbits. arXiv preprint arXiv:2009.00055, 2020.
  6. Gasparim, E.; San Martin, L. & Valencia, F.: Infinitesimally Tight Lagrangian Orbits, Mathematische Zeitschrift, 297 (3), 1877-1898, 2021.
  7. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Academic press, 80, 1979.
  8. Jurdjevic, V.: Affine-Quadratic Problems on Lie Groups: Tops and Integrable Systems. Journal of Lie Theory 30 (2020), 425-444.
  9. Marsden, J.: Montgomery, R. & Ratiu, T.: Reduction, symmetry, and phases in mechanics, American Mathematical Soc., 436, 1990.
  10. Marsden, J. & Weinstein, A.: Reduction of symplectic manifolds with symmetry. Reports on mathematical physics, 5 (1), 121-130, 1974.
  11. Marsden, J. & Weinstein, A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7, 1-3, 305-323, 1983.
  12. San Martin, L.: Álgebras de Lie, Editora Unicamp, 2010.
  13. San Martin, L.: Grupos de Lie, Editora Unicamp, 2016.
  14. Sugiura, M.: Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, Journal of the Mathematical Society of Japan, 31 (4), 374–434, 1959.
  15. Zwart, P. B., & Boothby, W.: On compact homogeneous symplectic manifolds, Annales de l’institut Fourier, 30 (1), 1980.