Research and Innovation Articles
Published 2023-02-20
Keywords
- Coadjoint orbits,
- Homogeneous spaces,
- Lagrangian submanifolds,
- Hermitian symplectic form
How to Cite
Báez, J., & San Martin, L. A. (2023). Coadjoint semi-direct orbits and Lagrangian families with respect to Hermitian form. Revista Integración, Temas De matemáticas, 41(1), 27–42. https://doi.org/10.18273/revint.v41n1-2023002
Copyright (c) 2023 Revista Integración, temas de matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
We use the underlying structure of then coadjoint orbits of a semidirect product of a connected Lie group and a vector space to obtain families of Lagrangian submanifolds in the adjoint orbits of complex semisimple Lie groups with respect to the symplectic hermitian form. This construction is a generalization of a type of semi-direct orbit previously studied by the authors.
Downloads
Download data is not yet available.
References
- Baez, J. & San Martin, L.A.B.: Deformations of adjoint orbits for semisimple Lie algebras and Lagrangian submanifolds, Differential geometry and applications, 75, p. 101719, 2021.
- Bates, S. & Weinstein, A.: Lectures on the Geometry of Quantization. American Mathematical Soc., 8, 1997.
- Gasparim, E.; Grama, L. & San Martin, L. A. B.: Adjoint orbits of semisimple Lie groups and Lagrangian submanifolds. Proceedings Edinburgh Mathematical Society, 60(2), 361- 385, 2017.
- Gasparim, E.; Grama, L.; & San Martin, L.A.B.: Symplectic Lefschetz fibrations on adjoint orbits. Forum Mathematicum, 28 (5), 2016.
- Gasparim, E. & San Martin, L.A.B.: Morse functions and Real Lagrangian Thimbles on Adjoint Orbits. arXiv preprint arXiv:2009.00055, 2020.
- Gasparim, E.; San Martin, L. & Valencia, F.: Infinitesimally Tight Lagrangian Orbits, Mathematische Zeitschrift, 297 (3), 1877-1898, 2021.
- Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Academic press, 80, 1979.
- Jurdjevic, V.: Affine-Quadratic Problems on Lie Groups: Tops and Integrable Systems. Journal of Lie Theory 30 (2020), 425-444.
- Marsden, J.: Montgomery, R. & Ratiu, T.: Reduction, symmetry, and phases in mechanics, American Mathematical Soc., 436, 1990.
- Marsden, J. & Weinstein, A.: Reduction of symplectic manifolds with symmetry. Reports on mathematical physics, 5 (1), 121-130, 1974.
- Marsden, J. & Weinstein, A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7, 1-3, 305-323, 1983.
- San Martin, L.: Álgebras de Lie, Editora Unicamp, 2010.
- San Martin, L.: Grupos de Lie, Editora Unicamp, 2016.
- Sugiura, M.: Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, Journal of the Mathematical Society of Japan, 31 (4), 374–434, 1959.
- Zwart, P. B., & Boothby, W.: On compact homogeneous symplectic manifolds, Annales de l’institut Fourier, 30 (1), 1980.