Research and Innovation Articles
Published 2023-06-30
Keywords
- q− Lorentz algebra,
- q− spinor derivative and integral,
- differential spinor equation
How to Cite
Jaramillo Quiceno, J. C. (2023). An introduction to Spinor differential and integral calculus from q− Lorentzian Algebra. Revista Integración, Temas De matemáticas, 41(1), 43–55. https://doi.org/10.18273/revint.v41n1-2023003
Copyright (c) 2023 Revista Integración, temas de matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
We introduce in this paper the spinor differential and integral calculus from q- lorentzian algebra, differential spinor equation and Lorentzian q− spinor differential equation. Finally a few comments.
Downloads
Download data is not yet available.
References
- Schmidke, W. B., Wess, J., and Zumino, B. "A q− deformed Lorentz algebra" , preprint MPI-Ph/91-15, to be published in Z. Phys. C Particles and Fields.
- Cartan. E., Theory of spinors, Dover Publications. Inc, (1966).
- Beretetskii, V. B., Lifshitz, E, M., and Pitaekskii, L, P., "Relativistic Quantum Theory, Volume 4 of course of theoretical physics, part one", Pergamon press, (1971).
- Gori. F., Santarsiero. M., Frezza . F., Schettini. G., Vicalvi. S., Ambrosini. S., and Borghi. R. "An elementary approach to spinors", Eur. J. Phys. (1996). https://doi.org/10.1088/0143-0807/18/4/002.
- Lachieze - Rey, M., Spin and Clifford. "7th International Conference on Clifford Algebras and their Applications", (2005), http://doi.org/10.1007/s00006009-0187-y. hal-00502337. algebras, an introduction.
- Schmidt. A., and Wachter. H. "Spinor calculus for q-deformed quantum spaces I", e-Print: 0705.1640 [hep-th], arXiv:0705.1640 [hep-th].
- Zettili N., "Quantum Mechanics Concepts and Applications", second edition, John Willey and Sons, (2009).