Revista Integración, temas de matemáticas.
Vol. 41 No. 1 (2023): Revista Integración, temas de matemáticas
Research and Innovation Articles

A really topological treatment of some aspects of Carathéodory’s theory of prime ends

Judy A. Kennedy
University of Delaware

Published 2023-06-07

Keywords

  • Carathéodory’s Theory of Prime Ends,
  • homeomorphism approximation,
  • homeomorphism construction,
  • indecomposable continuum,
  • Schoenflies Theorem,
  • confluent mapping,
  • monotone mapping
  • ...More
    Less

How to Cite

Kennedy, J. A. (2023). A really topological treatment of some aspects of Carathéodory’s theory of prime ends. Revista Integración, Temas De matemáticas, 41(1), 57–67. https://doi.org/10.18273/revint.v41n1-2023004

Abstract

A homeomorphism approximation technique is applied to give (1) proofs of some theorems of C. Carathéodory, and (2) a proof of a theorem of N. Rutt. The proofs use only tools from general topology (and are new in that respect), and a generalization of a theorem of Carathéodory is obtained.

Downloads

Download data is not yet available.

References

  1. Ahlfors L.V., Conformal Invariants: Topiscs in Geometric Function Theory, McGraw-Hill, New York, 1973.
  2. Alligood K.T. and Yorke J.A., “Accessible saddles on fractal basin boundaries”, Physica D: Nonlinear Phenomena, 90 (1996), No. 3, 242-261. doi: 10.1016/0167-2789(95)00249-9
  3. Barge M. and Gillette R., Indecomposability and dynamics of invariant plane separating continua, Contemp. Math, vol. 117, Arcata, 1991. doi: 10.1090/conm/117
  4. Bing R.H., “A homogeneous indecomposable plane continuum”, Duke Mathematical Journal, 15 (1948), No. 3, 729-742. doi: 10.1215/S0012-7094-48-01563-4
  5. Bing R.H., “Each Homogeneous Nondegenerate Chainable Continuum Is a Pseudo-arc”, Proceedings of the American Mathematical Societ, 10 (1959), No. 3, 345-346. doi: 10.2307/2032844
  6. Carathéodory C., “u¨ber die gegenseitige Beziehung der Ra¨nder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis”, Math. Ann., 73 (1913), 305320. doi: 10.1007/BF01456720
  7. Carathéodory C., “u¨ber die Begrenzung einfach zusammenhängender Gebiete”, Math. Ann., 73 (1913), 323370. doi: 10.1007/BF01456699
  8. Cartwright M.L. and Littlewood J.E., “Some fixed point theorems”, Math. Ann., 54 (1951), No. 1, 137. doi: 10.2307/1969308
  9. Kennedy J., “The construction of chaotic homeomorphisms on chainable continua”, Topology and its Applications, 43 (1992), No. 2, 91-116. doi: 10.1016/0166-8641(92)90133-K
  10. Kennedy J., “Examples of homeomorphisms on pseudoarcs that admit wandering points”, Topology and its Applications, 36 (1990), No. 1, 27-38. doi: 10.1016/0166-8641(90)90033-X
  11. Kennedy J., “Positive entropy homeomorphisms on the pseudoarc”, The Michigan Mathematical Journal, 36 (1989), No. 2, 181-191. doi: 10.1307/mmj/1029003941
  12. Kennedy J., “Stable Extensions of Homeomorphisms on the Pseudoarc”, Trans. Amer. Math. Soc., 310 (1988), No. 1, 167-167. doi: 10.1090/S0002-9947-1988-0939804-4
  13. Kennedy J., “A Transitive Homeomorphism on the Pseudoarc which is Semiconjugate to the Tent Map”, Trans. Amer. Math. Soc., 326 (1991), No. 2, 773-793. doi: 10.2307/2001783
  14. Kennedy J. and Rogers Jr. J.T., “Orbits of the Pseudocircle”, Trans. Amer. Math. Soc., 296 (1986), No. 1, 327-327. doi: 10.1090/S0002-9947-1986-0837815-9
  15. Lewis W., “Most Maps of the Pseudo-Arc are Homeomorphisms”, Proceedings of the American Mathematical Society, 91 (1984), No. 1, 147-154. doi: 10.2307/2045287
  16. Lewis W., “Stable Homeomorphisms of the Pseudo-Arc”, Canadian Journal of Mathematic, 31 (1979), No. 2, 363-374. doi: 10.4153/CJM-1979-041-1
  17. Mather J.N., “Area preserving twist homeomorphism of the annulus”, Commentarii Mathematici Helvetici+|, 54 (1979), 397404. doi: 10.1007/BF02566283
  18. Mather J., “Invariant subsets of area-preserving homeomorphisms of surfaces”, Math. Suppl. Studies, 7B (1981), 531561. doi: 10.1023/A:1009562622129
  19. Mather J., “Topological proofs of some purely topological consequences of Caratheodorys theory of prime ends,”, Selected Studies,(Th M Rassias, GM Rassias, editors) North-Holland, 1982, 225255.
  20. Newman H.A., “Elements of the topology of plane sets of points”, Cambridge University Press, 8 (1939), No. 221, 487-488. doi: 10.2307/3607023
  21. Ohtsuka M., Dirichlet Problem Extremal Length and Prime Ends, Van Nostrand Reinhold Co., New York, 1970.
  22. Pommerenke C., Univalent functions, in Go¨ttingen by Vandenhoeck und Ruprecht, Krijgslaan, 1975.
  23. Rutt N.E., “Prime ends and indecomposability”, Bull. Amer. Math. Soc., 41 (1935), No. 4, 265-273.
  24. Walker R.W., “Periodicity and Decomposability of Basin Boundaries with Irrational Maps on Prime Ends”, Transactions of the American Mathematical Society, 324 (1991), No. 1, 303-317.