Revista Integración, temas de matemáticas.
Vol. 41 No. 2 (2023): Revista Integración, temas de matemáticas
Research and Innovation Articles

About Lie algebra classification, conservation laws, and invariant solutions for the relativistic fluid sphere equation

Y. Acevedo
Universidad EAFIT
O. M. L. Duque
UNICAMP
Danilo A. García Hernández
UNICAMP
G. Loaiza
Universidad EAFIT

Published 2023-09-30

Keywords

  • Optimal algebra,
  • Invariant solutions,
  • Lie algebra classification,
  • Lie symmetry group,
  • Ibragimov's method,
  • Noether's theorem,
  • Conservation laws,
  • Variational symmetries
  • ...More
    Less

How to Cite

Acevedo Agudelo, Y. A., Londoño Duque, O. M., García Hernández, D. A., & Loaiza Ossa, G. I. (2023). About Lie algebra classification, conservation laws, and invariant solutions for the relativistic fluid sphere equation. Revista Integración, Temas De matemáticas, 41(2), 83–101. https://doi.org/10.18273/revint.v41n2-2023002

Abstract

The optimal generating operators for the relativistic fluid sphere equation have been derived. We have characterized all invariant solutions of this equation using these operators. Furthermore, we have introduced variational symmetries and their corresponding conservation laws, employing both Noether's theorem and Ibragimov's method. Finally, we have classified the Lie algebra associated with the given equation.

Downloads

Download data is not yet available.

References

  1. Lie S., Theorie der Transformationsgruppen, Mathematische Annalen, vol. 2, 1970.
  2. Noether E., “Invariante Variationsprobleme”, in Nachrichten der Königlichen Gesellschaft der Wissenschaften (Dieterich), vol. 2, 1918, 235-257. doi: 10.1007/978-3-642-39990-913
  3. Sachin Kumar, Shubham K. Dhiman, Dumitru Baleanu, Mohamed S. Osman y Abdul-Majid Wazwaz, Lie Symmetries, Closed-Form Solutions, y Various Dynamical Profiles of Solitons for the Variable Coefficient (2+1)-Dimensional KP Equations, Symmetry, vol. 14, no. 3, pág. 597, marzo de 2022. DOI: 10.3390/sym14030597. Editorial MDPI AG.
  4. Yao Ruo-Xia y Lou Sen-Yue, A Maple Package to Compute Lie Symmetry Groups and Symmetry Reductions of (1+1)-Dimensional Nonlinear Systems, Chinese Physics Letters, vol. 25, no. 6, pág. 1927, 2008. DOI: 10.1088/0256-307X/25/6/002. Editorial IOP Publishing.
  5. Sachin Kumar, Wen-Xiu Ma y Amit Kumar, Lie Symmetries, Optimal System, and Group-Invariant Solutions of the (3+1)-Dimensional Generalized KP Equation, Chinese Journal of Physics, vol. 69, págs. 1-23, febrero de 2021. DOI: 10.1016/j.cjph.2020.11.013. Editorial Elsevier BV.
  6. G. Bluman y S. Kumei, Symmetries and Differential Equations, Editorial: Springer, 1989, Serie: Applied Mathematical Sciences (81), Lugar: New York.
  7. L.V. Ovsyannikov, Group Analysis of Differential Equations, Editorial: Academic Press, 1982 (Edición en inglés; edición original en ruso: Nauka, Moscow, 1978), Lugar: New York.
  8. B. J. Cantwell, Introduction to Symmetry Analysis, Cambridge University Press, 2002, Serie: Cambridge Texts in Applied Mathematics, ISBN: 9781139431712.
  9. Hans Stephani, Differential Equations: Their Solution Using Symmetries, Cambridge University Press, 1989.
  10. Sachin Kumar y Shubham Kumar Dhiman, Lie Symmetry Analysis, Optimal System, Exact Solutions, and Dynamics of Solitons of a (3+1)-Dimensional Generalized (BKP) Boussinesq Equation, Pramana, vol. 96, no. 1, enero de 2022. DOI: 10.1007/s12043-021-02269-9. Editorial Springer Science and Business Media LLC.
  11. H. A. Buchdahl, A Relativistic Fluid Sphere Resembling the Emden Polytrope of Index 5, Astrophysical Journal, vol. 140, págs. 1512-1516, 1964. DOI: 10.1086/148055.
  12. L. G. S. Duarte, S. E. S. Duarte, L. A. C. P. da Mota y J. E. F. Skea, Solving Second Order Equations by Extending the Prelle Singer Method, J. Phys. A: Math. Gen., vol. 34, págs. 3015-3039, 2001. DOI: 10.1088/0305-4470/34/14/308.
  13. C. Muriel y J.L. Romero, First Integrals, Integrating Factors, and λ-Symmetries of Second-Order Differential Equations, J. Phys. A: Math. Theor., vol. 42, págs. 365207, 2009. DOI: 10.1088/1751-8113/42/36/365207.
  14. V. K. Chandrasekar, M. Senthilvelan y M. Lakshmanan, On the Complete Integrability and Linearization of Certain Second-Order Nonlinear Ordinary Differential Equations, Proc. R. Soc., vol. 461, págs. 2451-76, 2005. DOI: 10.1098/rspa.2005.1465.
  15. A. D. Polyanin y V. F. Zaitsev, Exact Solutions for Ordinary Differential Equations, Editorial: Chapman and Hall/CRC, 2002. DOI: 10.1201/9781315117638.
  16. P. J. Olver, Applications of Lie Groups to Differential Equations, Editorial: Springer-Verlag, 1986. DOI: 10.1007/978-1-4684-0274-2.
  17. P.E. Hydon y D.G. Crighton, Symmetry Methods for Differential Equations: A Beginner’s Guide, Editorial: Cambridge University Press, 2000. DOI: 10.1017/CBO9780511623967. Serie: Cambridge Texts in Applied Mathematics. ISBN: 9780521497862. LCCN: 99031354.
  18. Sachin Kumar y Setu Rani, Invariance Analysis, Optimal System, Closed−Form Solutions, and Dynamical Wave Structures of a (2 + 1)−Dimensional Dissipative Long Wave System, Physica Scripta, vol. 96, no. 12, págs. 125202, agosto de 2021. DOI: 10.1088/1402-4896/ac1990. Editorial IOP Publishing.
  19. G. Zewdie, Lie Symmetries of Junction Conditions for Radiating Stars, Editorial: University of KwaZulu-Natal, 2011. DOI: 10.10413/9840.
  20. Sachin Kumar y Setu Rani, Symmetries of Optimal System, Various Closed-Form Solutions, and Propagation of Different Wave Profiles for the Boussinesq Burgers System in Ocean Waves, Physics of Fluids, vol. 34, no. 3, marzo de 2022. DOI: 10.1063/5.0085927. Editorial AIP Publishing.
  21. Z. Hussain, Optimal System of Subalgebras and Invariant Solutions for the Black-Scholes Equation, Editorial: Blekinge Institute of Technology, 2009. URL: https://www.divaportal.org/smash/get/diva2:830112/FULLTEXT01.pdf.
  22. Sachin Kumar, Dharmendra Kumar y Abdul-Majid Wazwaz, Lie Symmetries, Optimal System, Group-Invariant Solutions, and Dynamical Behaviors of Solitary Wave Solutions for a (3+1)Dimensional KdV-Type Equation, The European Physical Journal Plus, vol. 136, no. 5, mayo de 2021. DOI: 10.1140/epjp/s13360-021-01528-3. Editorial Springer Science and Business Media LLC.
  23. M. C. Nucci y P. G. L. Leach, An Old Method of Jacobi to Find Lagrangians, Journal of Nonlinear Mathematical Physics, 2009. DOI: 10.1142/S1402925109000467.
  24. I. M. Gelfand y S. V. Fomin, Calculus of Variations, Editorial: Dover Publications, USA, 2000. ISBN: 9780486135014.
  25. M. L. Gandarias, Weak Self-Adjoint Differential Equations, Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 262001, 2011. DOI: 10.1088/1751-8113/44/26/262001.
  26. N. H. Ibragimov, A New Conservation Theorem, Journal of Mathematical Analysis and Applications, vol. 333, no. 1, págs. 311-328, 2007. DOI: 10.1016/j.jmaa.2006.10.078.
  27. N. H. Ibragimov, Nonlinear Self-adjointness in Constructing Conservation Laws, Archives of ALGA, vol. 7/8, págs. 1-90, 2011. DOI: 10.48550/arXiv.1109.1728.
  28. James Humphreys, Introduction to Lie Algebras and Representation Theory, Editorial: Springer New York, NY, 1972. DOI: 10.1007/978-1-4612-6398-2.
  29. G. M. Mubarakzyanov, Classification of Real Structures of Lie Algebras of Fifth Order, Izv. Vyssh. Uchebn. Zaved, vol. 3, no. 1, págs. 99-106, 1963. URL: http://mi.mathnet.ru/eng/ivm/y1963/i3/p99.