Revista Integración, temas de matemáticas.
Vol. 41 No. 2 (2023): Revista Integración, temas de matemáticas
Research and Innovation Articles

A first look at knot theory and Khovanov homology

Gabriel Montoya-Vega
CUNY Graduate Center

Published 2023-11-17

Keywords

  • Knots and links,
  • bracket polynomial,
  • Khovanov homology,
  • long exact sequence of Khovanov homology,
  • torus knots

How to Cite

Montoya Vega, G. (2023). A first look at knot theory and Khovanov homology. Revista Integración, Temas De matemáticas, 41(2), 103–123. https://doi.org/10.18273/revint.v41n2-2023003

Abstract

The mathematical theory of knots studies the embeddings of circles into the space R^3. The introduction of homology theories results in complex mathematical structures that generate new research opportunities. In this article, we oer a rst look into Khovanov homology, the long exact sequence of Khovanov homology, and we present a summary of the historical origins of the theory. Moreover we use this sequence to calculate the homology of torus knots T(2, n). One of the the main objectives in publishing this article is to popularize knot theory and Khovanov homology in Colombia and LatinAmerica in general.

Downloads

Download data is not yet available.

References

  1. J. W. Alexander and G. B. Briggs, "On types of knotted curves", Ann. of Math 28(2), 562-586., 1926/27.
  2. D. Bar-Natan, "On Khovanov's categorification of the Jones polynomial", Alg. Geom. Top., 2 337-370, 2002. arXiv:0201043 [math.QA].
  3. D. Collon, Ancient Near Eastern Art, University of California Press, Berkeley, Los Angeles, 1995.
  4. L. Euler, "Solutio problematis ad geometriam situs pertinentis", Commentarii Academiae Scientarum Imperialis Petropolitanae. 8 128-140, 1736.
  5. M. C. Heath, Early Helladic Clay Sealings from the House of the Tiles at Lerna, Hesperia, 27, pl.22, no. S57, 1958.
  6. V. F. R. Jones, "A polynomial invariant for knots via von Neumann algebras", Bull. Amer. Math. Soc. (N.S.) 12, 103-111. MR 766964 Zbl 0564.57006, 1985.
  7. L. H. Kauffman, "An invariant of regular isotopy", Trans. Amer. Math. Soc. 318, no. 2, 417-471, 1990.
  8. M. Khovanov, "A categorification of the Jones polynomial", Duke Math. J. 101, no. 3, 359-426, 2000. arXiv:9908171 [math.QA].
  9. J. J. Mira-Albanés, J. G. Rodríguez-Nieto, and O. P. Salazar-Díaz, "Introducción a la teoría de nudos", Revista De Ciencias, 20(2), 34., 2016.
  10. S. Mukherjee, J. H. Przytycki, M. Silvero, X. Wang, and S. Y. Yang, "Search for torsion in Khovanov homology", Exp. Math. 27, no. 4, 488-497, 2018. arXiv:1701.04924v1 [math.GT].
  11. G. Montoya-Vega, "A Historical Exploration of Knot Theory, Khovanov Homology, and Framing Changes of Links and Skein Modules", Thesis (Ph.D.), The George Washington University, Washington, DC. ProQuest Dissertations Publishing, 29320474, 2022.
  12. G. Montoya-Vega, "A Glimpse of the Khovanov Homology of T(2,n) Via Long Exact Sequence", 2023. arXiv:2308.08452 [math.GT].
  13. J. H. Przytycki, R. P. Bakshi, D. Ibarra, G. Montoya-Vega, and D. Weeks, "Lectures in Knot Theory: An Exploration of Contemporary Topics", Springer Universitext,
  14. M. D. Pabiniak, J. H. Przytycki, and R. Sazdanové, "On the first group of the chromatic cohomology of graphs", Geom. Dedicata 140, 19-48, 2009. arXiv:0607326 [math.GT].
  15. J. H. Przytycki, "Classical roots of Knot Theory", Chaos, Solitons and Fractals Vol. 9 (No. 4-5), 531-545, 1998.
  16. J. H. Przytycki, "History of Knot Theory", 2007. arXiv:0703096v1 [math.HO].
  17. J. H. Przytycki, "When the theories meet: Khovanov homology as Hochschild homology of links", Quantum Topology 1, no. 2, 93-109, 2010. arXiv:0509334v2 [math.QA].
  18. J. H. Przytycki, "Topología algebraica basada en nudos", Matemáticas: Enseñanza Universitaria 1-30, XVIII, 2010. redalyc.468/46817293001.pdf.
  19. K. Reidemeister, "Elementare Begründung der Knotentheorie", Abh. Math. Sem. Univ. Hamburg, 5 (1) 24-32, 1927.
  20. A. T. Vandermonde, "Remarques sur les proble`mes de situation", Me`moires de l'Acade`mie Royale des Sciences (Paris) 566-574, 1771.
  21. O. Viro, "Remarks on definition of Khovanov homology", 2002. arXiv:0202199 [math.GT] .
  22. O. Viro, "Khovanov homology, its definitions and ramifications", Fund. Math. 184, 317-342, 2004.
  23. D. Wolkstein and S. N. Kramer, Inanna: Queen of heaven and earth: Her Stories and Hymns from Sumer, Harper Collins Publisher, 1983.