Accepted articles: Preprint
Published 2024-07-24
Keywords
- Non-monogenic functions,
- Dirac operator,
- new difference operator,
- new type of derivative
How to Cite
Jaramillo Quiceno, J. C. (2024). An approach to derivatives for non-monogenic functions. Revista Integración, Temas De matemáticas, 42(2), 11–21. https://doi.org/10.18273/revint.v42n2-2023002
Copyright (c) 2024 Revista Integración, temas de matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
In this paper we introduce the derivatives for non-monogenic functions. We establish the derivative for non-monogenic functions on the Dirac operator. We also propose a new type of difference operator for non-monogenic function and new type of derivative.
Downloads
Download data is not yet available.
References
- Brackx F.R., Delanghe R., and Sommen F., Clifford Analysis, Pitman Advanced Pub. Program, Pitman, London, 1982.
- Krasnov Y., “The Structure for Monogenic Functions," in Clifford Algebras and their Applications in Mathematical Physics: Volume 2: Clifford Analysis (Ryan, John and Sprößig, Wolfgang), irkhäuser Boston (2000), pp. 247–260. doi: 10.1007/978−1−4612−1374−1_13
- Luong N.C., “On a class of monogenic functions in clifford algebra", VNU Journal of Science: Natural Sciences and Technology, 12 (1996), No. 1, 40–47.
- Ryan J., Clifford Algebras in Analysis and Related Topics, CRC Press, Boca Raton, 1996.
- Jaramillo J.C., q-Difference Operators and Derivations on the Quadratic Relativistc Invariant Algebras Rev. Momento 69 (2024) (in press).