Revista Integración, temas de matemáticas.
Vol. 42 No. 2 (2024): Revista Integración, temas de matemáticas
Accepted articles: Preprint

An approach to derivatives for non-monogenic functions

Julio Cesar Jaramillo-Quiceno
Universidad Nacional de Colombia

Published 2024-07-24

Keywords

  • Non-monogenic functions,
  • Dirac operator,
  • new difference operator,
  • new type of derivative

How to Cite

Jaramillo Quiceno, J. C. (2024). An approach to derivatives for non-monogenic functions. Revista Integración, Temas De matemáticas, 42(2), 11–21. https://doi.org/10.18273/revint.v42n2-2023002

Abstract

In this paper we introduce the derivatives for non-monogenic functions. We establish the derivative for non-monogenic functions on the Dirac operator. We also propose a new type of difference operator for non-monogenic function and new type of derivative.

Downloads

Download data is not yet available.

References

  1. Brackx F.R., Delanghe R., and Sommen F., Clifford Analysis, Pitman Advanced Pub. Program, Pitman, London, 1982.
  2. Krasnov Y., “The Structure for Monogenic Functions," in Clifford Algebras and their Applications in Mathematical Physics: Volume 2: Clifford Analysis (Ryan, John and Sprößig, Wolfgang), irkhäuser Boston (2000), pp. 247–260. doi: 10.1007/978−1−4612−1374−1_13
  3. Luong N.C., “On a class of monogenic functions in clifford algebra", VNU Journal of Science: Natural Sciences and Technology, 12 (1996), No. 1, 40–47.
  4. Ryan J., Clifford Algebras in Analysis and Related Topics, CRC Press, Boca Raton, 1996.
  5. Jaramillo J.C., q-Difference Operators and Derivations on the Quadratic Relativistc Invariant Algebras Rev. Momento 69 (2024) (in press).