Research and Innovation Articles
Published 2011-01-31
Keywords
- group action,
- Cayley graphs,
- quasi-isometries,
- quasi-isometricembeddings
How to Cite
Salazar-Díaz, O., & Vergara-Ríos, G. (2011). Introduction to geometric group theory. Revista Integración, Temas De matemáticas, 29(1), 15–30. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2408
Abstract
In this article we will give an introduction to geometric group theory. We will see how from a finite presentation of a group, we can give this group a metric space structure. We discuss the action of the groupon this space and we study geometric properties preserved under quasiisometry.
Downloads
Download data is not yet available.
References
[1] Bridson M. y Haefliger A., Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999.
[2] De la Harpe P., Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000.
[3] Geoghegan R., Topological methods in group theory, Graduate Texts in Mathematics, 243, Springer, New York, 2008.
[4] Hatcher A., Algebraic topology, Cambridge University Press, Cambridge, 2002.
[5] Johnson D.L., Presentations of groups, London Mathematical Society Student Texts, 15, Cambridge University Press, Cambridge, 1990.
[6] Lima E.L., Espaços métricos, Projecto Euclides, CNPq, Rio de Janeiro, 2003.
[2] De la Harpe P., Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000.
[3] Geoghegan R., Topological methods in group theory, Graduate Texts in Mathematics, 243, Springer, New York, 2008.
[4] Hatcher A., Algebraic topology, Cambridge University Press, Cambridge, 2002.
[5] Johnson D.L., Presentations of groups, London Mathematical Society Student Texts, 15, Cambridge University Press, Cambridge, 1990.
[6] Lima E.L., Espaços métricos, Projecto Euclides, CNPq, Rio de Janeiro, 2003.