Revista Integración, temas de matemáticas.
Vol. 25 No. 1 (2007): Revista Integración, temas de matemáticas
Research and Innovation Articles

Introducción a la relatividad numérica

F. S. Guzmán
Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo.

Published 2007-04-30

Keywords

  • numerical relativity,
  • finite difference methods,
  • Einstein’s equations

How to Cite

Guzmán, F. S. (2007). Introducción a la relatividad numérica. Revista Integración, Temas De matemáticas, 25(1), 1–32. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/259

Abstract

 In this manuscript there are examples of the technique of finite differences approximations to the solution of systems of partial differential equations, in particular systems of equations associated with the Einstein’s equations. The aim is that the examples that are shown can serve as an introduction to Numerical Relativity. The cases studied in depth are: the wave equation in a 1+1 general flat space-time, the real scalar field coupled to General Relativity and the complex scalar field coupled to General Relativity.

 

Downloads

Download data is not yet available.

References

[1] M. Campanelli, C.O. Lousto, P. Marronetti, Y. Zlochower, Phys. Rev. Lett. 96, 111101 (2006).

[2] John G. Baker, Joan Centrella, Dae-Il Choi, Michael Koppitz, James van Meter, Phys. Rev. Lett. 96, 111102 (2006).

[3] J.A. González, et al. Phys. Rev. Lett. 98, 091101 (2007).

[4] M. Alcubierre, R. Becerril, F.S. Guzmán, T. Matos, D. Núñez, L.A. Ureña-López, Class. Quantum Grav. 20, (2003) 2883-2903.

[5] M.W. Choptuik, L. Lehner, I. Olabarrieta, R. Petryk, F. Pretorius, H. Villegas, Phys. Rev. D 68, 044001 (2003).

[6] Olivier Sarbach, Luis Lehner, Phys. Rev. D 71, 026002 (2005).

[7] F.S. Guzmán, L. Lehner, O. Sarbach, Phys. Rev. D 76, 066003 (2007).

[8] J. Thornburg, E-print: gr-qc/9906022

[9] C. Bona, C. Palenzuela-Luque, Elements of Numerical Relativity, Lect. Notes Phys. 673, Springer, Berlin Heidelberg, 2005.

[10] B. Gustafsson, H-O. Kreiss, J. Oliger, Time Dependent Problems and Difference Methods. Wiley-Interscience, 1996.

[11] R.J. LeVeque, in Numerical methods for conservation laws. Birkhauser, Basel, 1992.

[12] W.H. Press, S.A. Teukolsky, W.T. Watterling, B.P. Flannery, Numerical Recipes in Fortran. Cambridge University Press, 1992.

[13] M. Alcubierre, R. Becerril, F.S. Guzmán, T. Matos, D. Núñez, L.A. Ureña-López, Class. Quantum Grav. 20, 2883 (2003)

[14] M. Alcubierre, F.S. Guzmán, T. Matos, D. Núñez, L.A. Ureña-López, P. Wiederhold, Class. Quantum Grav. 19, 5017 (2002).

[15] Gregory B. Cook, Living Reviews in Relativity. 2005-5. http://www.livingreviews.org/Articles/Volume3/2000-5cook

[16] M. Alcubierre, J.A. González, M. Salgado, Phys. Rev. D 70, 064016 (2004).

[17] M.W. Choptuik, Phys. Rev. Lett. 70, 9-12 (1993).

[18] E. Seidel, W-M. Suen, Phys. Rev. Lett. 66, 1659 (1991).

[19] R. Ruffini, S. Bonazolla, Phys. Rev. 187, 1767 (1969).

[20] E. Seidel, W-M. Suen, Phys. Rev. D 42, 384 (1990).

[21] J. Balakrishna, E. Seidel, W-M. Suen, Phys. Rev. D 58, 104004 (1998).

[22] M. Gleiser, Phys. Rev. D 38, 2376 (1988).

[23] S.H. Hawley, M.W. Choptuik, Phys. Rev. D 62, 104024 (2000).

[24] F.S. Guzmán, Phys. Rev. D 70, 044033 (2004).

[25] F.E. Schunck, D.F. Torres, Int. J. Mod. Phys. D 9, (2000) 601.

[26] M. Colpi, S.L. Shapiro, I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).

27] F.S. Guzmán, L.A. Ureña-López, ApJ 645, 814 (2006). ArXiV: astroph/0603613.

[28] D.F. Torres, S. Capozziello, G. Lambiase, Phys. Rev. D 62, 104012 (2000).

[29] D.F. Torres, Nucl. Phys. B 26, 377 (2002).

[30] Y-F. Tuan, R. Narayan, M.J. Rees, ApJ 606, 1112 (2004).

[31] J. Balakrishna, R. Bondarescu, G. Daues, F.S. Guzmán, E. Seidel, Class. Quantum Grav. 23, 2631-2652 (2006).

[32] José A. Font, “Numerical Hydrodynamics in General Relativity”, Living Rev. Relativity 6, (2003). http://www.livingreviews.org/lrr-2003-4

[33] Gregory B. Cook, “Initial Data for Numerical Relativity”, Living Rev. Relativity 3, (2000). http://www.livingreviews.org/lrr-2000-5

[34] José María Martí, Ewald Müller, “Numerical Hydrodynamics in Special Relativity”, Living Rev. Relativity 6, (2003). http://www.livingreviews.org/lrr-2003-7

[35] Peter Anninos, “Computational Cosmology: from the Early Universe to the Large Scale Structure”, Living Rev. Relativity 1, (1998). http://www.livingreviews.org/lrr-1998-2

[36] M. Alcubierre, Introduction to 3+1 Numerical Relativity. Oxford University Press, 2008.