Research and Innovation Articles
Published 2012-08-21
Keywords
- Continua,
- inverse limit,
- iterated function system,
- Sierpiński triangle,
- atractor
- indecomposable continuum,
- dyadic solenoid,
- self-similarity,
- fractals ...More
How to Cite
Camargo, J., & Isaacs, R. (2012). A continuum generated by the Sierpiński triangle using inverse limits. Revista Integración, Temas De matemáticas, 30(1), 1–13. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2698
Abstract
Inverse limits are a tool to construct spaces with curious topological properties, from very simple spaces. In this paper, we use inverse limits and an inductive construction of the Sierpinski triangle to build a continuum with very interesting topological properties, in particular, it is self-similar.
Keywords: Continua, inverse limit, iterated function system, Sierpiński triangle, atractor, indecomposable continuum, dyadic solenoid, self-similarity, fractals.
Downloads
Download data is not yet available.
References
- Arenas G. y Sabogal S.M., Una introducción a la geometría fractal, Ediciones Universidad Industrial de Santander, Bucaramanga, 2011.
- Barnsley M., Fractals everywhere, Academic Press, Inc., Boston, MA, 1988.
- Charalambous M.G., “The dimension of inverse limits”, Proc. Amer. Math. Soc. 58 (1976), 289–295.
- Hutchinson J.E., “Fractals and self-similarity”, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747.
- Ingram W.T., “Inverse Limits”, Aportaciones Matemáticas: Investigación 15, Sociedad Matemática Mexicana, México, 2000.
- Illanes A. and Nadler S.B., Jr., Hyperspaces. Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics, 216. Marcel Dekker, Inc., New York, 1999.
- Kuratowski K., Topology, Vol II, Academic Press, New York, 1968.
- Macías S., Topics on continua, Chapman & Hall/CRC, Boca Raton, FL, 2005.
- Nadler S.B., Jr., Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158. Marcel Dekker, Inc., New York, 1992.
- Sierpiński W., “Sur une courbe dont tout point est un point de ramification”, Prace Mat.- Fiz 27 (1916), 77-86.
- Willard S., General topology, Dover Publication, Inc. Mineola, New York, 2004.