Revista Integración, temas de matemáticas.
Vol. 30 No. 1 (2012): Revista Integración, temas de matemáticas
Research and Innovation Articles

g-contractible continua

Michael A. Rincon Villamizar
Universidad Industrial de Santander, Escuela de Matemáticas, Bucaramanga, Colombia.

Published 2012-08-21

Keywords

  • continua,
  • contractible,
  • g-contractible,
  • cone,
  • homotopy,
  • uniformly path connected,
  • dendroid
  • ...More
    Less

How to Cite

Rincon Villamizar, M. A. (2012). g-contractible continua. Revista Integración, Temas De matemáticas, 30(1), 43–55. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2701

Abstract

A continuum X is said to be g-contractible provided that there is a surjective map f: X→X which is homotopic to a constant map. In this article, we will study g-contractible continua. Answering a particular case ofa proposed question in the article“On g-contractibility of continua” [3], we will show that there exists a non-g-contractible continuum X such that its countable product X Nis g-contractible.

Downloads

Download data is not yet available.

References

  1. Bellamy D.P., The cone over the Cantor set-continuous maps from both directions, Topology Conference (Proc. General Topology Conf., Emory Univ., Atlanta, Ga., 1970), 8–25, Dept. Math., Emory Univ., Atlanta, Ga., 1970.
  2. Bellamy D.P. and Hagopian C.L., “Mapping continua onto their cones”, Colloq. Math. 41 (1979), no. 1, 53–56.
  3. Camargo J., Pellicer-Covarrubias P. and Rincón-Villamizar M.A., “On g-contractibility of continua”, preprint.
  4. Charatonik J.J., “Two invariants under continuity and the comparability of fans”, Fund. Math. 53 (1964), 187–204.
  5. Charatonik J.J., “On ramification points in the classical sense”, Fund. Math. 51 (1962), 229–252.
  6. Dugundji J., Topology, Allyn and Bacon, Inc., Boston, Mass., 1966.
  7. Engelking R. and Lelek A., “Cartesian products and continuous images”, Colloq. Math. 8 (1961), 27–29.
  8. Illanes A., “A continuum whose hyperspace of subcontinua is not g-contractible”, Proc. Amer. Math. Soc. 130 (2002), no. 7, 2179–2182.
  9. Illanes A. and Nadler S.B., Jr., Hyperspaces. Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics, 216. Marcel Dekker, Inc., New York, 1999.
  10. Kuperberg W., “Uniformly pathwise connected continua”, Studies in topology, (Proc. Conf., Univ. North Carolina, Charlotte, NC), (1975), 315–324.
  11. Krezemińska I. and Prajs J.R., “A non-g-contractible uniformly path connected continuum”, Topology Appl. 91 (1999), no. 2, 151–158.
  12. Munkres J.R., Topology, 2nd ed., Prentice-Hall, Inc., Upper Saddle River, NJ, 2000.
  13. Nadler S.B., Jr., Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158. Marcel Dekker, Inc., New York, 1992.
  14. Nadler S.B., Jr., Hyperspaces of sets. A text with research questions, Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, Inc., New York, 1978.
  15. Patty C.W., Foundations of Topology, Second edition, Jones and Bartlett Publishers, Boston, MA, 2009.