Research and Innovation Articles
Published 2012-08-21
Keywords
- continua,
- contractible,
- g-contractible,
- cone,
- homotopy
- uniformly path connected,
- dendroid ...More
How to Cite
Rincon Villamizar, M. A. (2012). g-contractible continua. Revista Integración, Temas De matemáticas, 30(1), 43–55. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2701
Abstract
A continuum X is said to be g-contractible provided that there is a surjective map f: X→X which is homotopic to a constant map. In this article, we will study g-contractible continua. Answering a particular case ofa proposed question in the article“On g-contractibility of continua” [3], we will show that there exists a non-g-contractible continuum X such that its countable product X Nis g-contractible.
Downloads
Download data is not yet available.
References
- Bellamy D.P., The cone over the Cantor set-continuous maps from both directions, Topology Conference (Proc. General Topology Conf., Emory Univ., Atlanta, Ga., 1970), 8–25, Dept. Math., Emory Univ., Atlanta, Ga., 1970.
- Bellamy D.P. and Hagopian C.L., “Mapping continua onto their cones”, Colloq. Math. 41 (1979), no. 1, 53–56.
- Camargo J., Pellicer-Covarrubias P. and Rincón-Villamizar M.A., “On g-contractibility of continua”, preprint.
- Charatonik J.J., “Two invariants under continuity and the comparability of fans”, Fund. Math. 53 (1964), 187–204.
- Charatonik J.J., “On ramification points in the classical sense”, Fund. Math. 51 (1962), 229–252.
- Dugundji J., Topology, Allyn and Bacon, Inc., Boston, Mass., 1966.
- Engelking R. and Lelek A., “Cartesian products and continuous images”, Colloq. Math. 8 (1961), 27–29.
- Illanes A., “A continuum whose hyperspace of subcontinua is not g-contractible”, Proc. Amer. Math. Soc. 130 (2002), no. 7, 2179–2182.
- Illanes A. and Nadler S.B., Jr., Hyperspaces. Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics, 216. Marcel Dekker, Inc., New York, 1999.
- Kuperberg W., “Uniformly pathwise connected continua”, Studies in topology, (Proc. Conf., Univ. North Carolina, Charlotte, NC), (1975), 315–324.
- Krezemińska I. and Prajs J.R., “A non-g-contractible uniformly path connected continuum”, Topology Appl. 91 (1999), no. 2, 151–158.
- Munkres J.R., Topology, 2nd ed., Prentice-Hall, Inc., Upper Saddle River, NJ, 2000.
- Nadler S.B., Jr., Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158. Marcel Dekker, Inc., New York, 1992.
- Nadler S.B., Jr., Hyperspaces of sets. A text with research questions, Monographs and Textbooks in Pure and Applied Mathematics, 49, Marcel Dekker, Inc., New York, 1978.
- Patty C.W., Foundations of Topology, Second edition, Jones and Bartlett Publishers, Boston, MA, 2009.