Revista Integración, temas de matemáticas.
Vol. 31 No. 2 (2013): Revista Integración, temas de matemáticas
Research and Innovation Articles

Induced connected functions

Sergio A. Pérez
Universidad Industrial de Santander

Published 2013-12-17

Keywords

  • Continuum,
  • induced functions,
  • connected functions,
  • weak Darboux function,
  • almost continuous functions

How to Cite

Pérez, S. A. (2013). Induced connected functions. Revista Integración, Temas De matemáticas, 31(2), 121–132. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/3751

Abstract

A function between topological spaces f : X → Y is said to be connected provided that the graph Γ(f) = {(x, f(x)) : x ∈ X} is connected. Given a continuum X, some hyperspaces are considered: 2X, the collection of all non-empty closed subsets of X; C(X), the set of all subcontinua of X, and Fn(X) the set of nonempty subsets of at most n points of X. Moreover, given f : X → Y a function between continua, consider the induced functions: 2f: 2X → 2defined by 2f(A) = f(A) for each A ∈  2X; Fn(f): Fn(X) → Fn(Y),  the restriction function Fn(f) = 2f|Fn(X); and, if f is a weak Darboux function, we define C(f): C(X) → C(Y) by C(f) = 2f|C(X). In this paper we study the relationships between the following five statements: 1) f is connected; 2) C(f) is connected; 3) Fn(f) is connected, for some n ≥ 2; 4) Fn(f) is connected, for all n ≥ 2; 5) 2f is connected.

Downloads

Download data is not yet available.

References

  1. Borsuk K. and Ulam S., “On symmetric products of topological spaces”, Bull. Amer. Math. Soc. 37 (1931), no. 12, 875–882.
  2. Brown J.B., “Almost continuity of the Cesàro-Vietoris function”, Proc. Amer. Math. Soc. 49 (1975), 185–188.
  3. Dugundji J., Topology, Allyn and Bacon, Inc., Boston, 1966.
  4. Garrett B.D., “When almost continuity implies connectivity”, Topology Proc. 13 (1988), no. 2, 203–210.
  5. Illanes A., “Induced almost continuous functions on Hyperspaces”, Colloq. Math. 105 (2006), no. 1, 69–76.
  6. Illanes A. and Nadler S.B. Jr., Hyperspaces. Fundamentals and Recent Advances, Monographs and textbooks in Pure and Applied Mathematics 216, Marcel Dekker, New York,
  7. Kellum K.R. and Rosen H., “Compositions of continuous functions and connected functions”, Proc. Amer. Math. Soc. 115 (1992), no. 1, 145–149.
  8. Nadler S.B. Jr., “Continua on which all real-valued connected functions are connectivity functions”, Topology Proc. 28 (2004), no. 1, 229–239.
  9. Nadler S.B. Jr., “Local connectivity functions on arcwise connected spaces and certain continua”, Topology Appl. 153 (2006), no. 8, 1279–1290.
  10. Nadler S.B. Jr., Continuum Theory. An Introduction, Monographs and textbooks in Pure and Applied Mathematics, Vol. 158, Marcel Dekker, New York, 1992.
  11. Stallings J., “Fixed point theorems for connectivity maps”, Fund. Math. 47 (1959), 249–263.
  12. Vietoris L., “Stetige Mengen”, Monatsh. Math. Phys. 31 (1921), no. 1, 173–204.