Research and Innovation Articles
Continuous dependence of very weak solutions for the stationary Navier-Stokes equations
Published 2005-02-17
Keywords
- very weak solutions,
- Navier-Stokes system,
- continuous dependence
How to Cite
Villamizar-Roa, E. J. (2005). Continuous dependence of very weak solutions for the stationary Navier-Stokes equations. Revista Integración, Temas De matemáticas, 23(1), 11–16. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/389
Abstract
In this work we show the continuous dependence of the very weak solutions for the stationary Navier- tokes system with respect to boundary data belonging to space L2(T).
Downloads
Download data is not yet available.
References
[1]C. Conca, “Étude d’un fluide traversant une paroi perforée”, I, II,J. Math. PuresAppl.,66(1987), 1-69.Vol. 23, No. 1, 2005.
[2]G. P. Galdi,An Introduction to the Mathematical Theory of the Navier-StokesEquations, I, II, Springer-Verlag, Berlin, 1994.
[3]J. L. LionsandE. Magenes, “Problèmes aux limites non homogènes et appli-cations”, Vol 1,Dunod, Paris, (1968).
[4]E. Marusic-Paloka, “Solvability of the Navier-Stokes System withL2Boun-dary Data”,Appl. Math. Optimization.41(2000), 365-375.
[5] R. Temam,Navier-Stokes equations, Theory and Nmerical Analysis, North-Holland, Amsterdam, 1984.
[2]G. P. Galdi,An Introduction to the Mathematical Theory of the Navier-StokesEquations, I, II, Springer-Verlag, Berlin, 1994.
[3]J. L. LionsandE. Magenes, “Problèmes aux limites non homogènes et appli-cations”, Vol 1,Dunod, Paris, (1968).
[4]E. Marusic-Paloka, “Solvability of the Navier-Stokes System withL2Boun-dary Data”,Appl. Math. Optimization.41(2000), 365-375.
[5] R. Temam,Navier-Stokes equations, Theory and Nmerical Analysis, North-Holland, Amsterdam, 1984.