Research and Innovation Articles
Published 2014-05-22
Keywords
- Generalized Topology,
- enlargements
How to Cite
Carpintero, C., Rajesh, N., & Rosas, E. (2014). Separation axioms on enlargements of generalized topologies. Revista Integración, Temas De matemáticas, 32(1), 19–26. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4060
Abstract
The aim of this paper is to characterize the κμ .closure of any subset A of X and study under what conditions a subset A of X is g.κμ -closed. We also introduce the notions of κ-Ti (i = 0, 1/2, 1, 2) and study some properties of them.
To cite this article: C. Carpintero, N. Rajesh, E. Rosas, Separation axioms on enlargements of generalized topologies, Rev. Integr. Temas Mat. 32 (2014), no. 1, 19–26.
Downloads
Download data is not yet available.
References
- Császár A., “Generalized topology, generalized continuity”, Acta Math. Hungar. 96 (2002), 351–357.
- Császár A., “Generalized open sets in generalized topology”, Acta Math. Hungar. 106 (2005), 53–66.
- Császár A., “Enlargements and generalized topologies”, Acta Math. Hungar. 120 (2008), 351–354.
- Császár A., “Product of generalized topology”, Acta Math. Hungar. 123 (2009), 127– 132.
- Maragathavalli S., Sheik John M. and Sivaraj D., “On g-closed sets in generalized topological spaces”, J. Adv. Res. Pure Math. 2 (2010), no. 1, 57–64.
- V. Renukadevi, “Generalized topology of an enlargement”, J. Adv. Res. Pure Math. 2 (2010), no. 3, 38–46.