Revista Integración, temas de matemáticas.
Vol. 32 No. 1 (2014): Revista Integración, temas de matemáticas
Research and Innovation Articles

Separation axioms on enlargements of generalized topologies

Carlos Carpintero
Universidad de Oriente
Namegalesh Rajesh
Rajah Serfoji Govt. College
Ennis Rosas
Universidad del Atlántico

Published 2014-05-22

Keywords

  • Generalized Topology,
  • enlargements

How to Cite

Carpintero, C., Rajesh, N., & Rosas, E. (2014). Separation axioms on enlargements of generalized topologies. Revista Integración, Temas De matemáticas, 32(1), 19–26. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4060

Abstract

The aim of this paper is to characterize the κμ .closure of any subset A of X and study under what conditions a subset A of X is g.κμ -closed. We also introduce the notions of κ-Ti (i = 0, 1/2, 1, 2) and study some properties of them.

To cite this article: C. Carpintero, N. Rajesh, E. Rosas, Separation axioms on enlargements of generalized topologies, Rev. Integr. Temas Mat. 32 (2014), no. 1, 19–26.



Downloads

Download data is not yet available.

References

  1. Császár A., “Generalized topology, generalized continuity”, Acta Math. Hungar. 96 (2002), 351–357.
  2. Császár A., “Generalized open sets in generalized topology”, Acta Math. Hungar. 106 (2005), 53–66.
  3. Császár A., “Enlargements and generalized topologies”, Acta Math. Hungar. 120 (2008), 351–354.
  4. Császár A., “Product of generalized topology”, Acta Math. Hungar. 123 (2009), 127– 132.
  5. Maragathavalli S., Sheik John M. and Sivaraj D., “On g-closed sets in generalized topological spaces”, J. Adv. Res. Pure Math. 2 (2010), no. 1, 57–64.
  6. V. Renukadevi, “Generalized topology of an enlargement”, J. Adv. Res. Pure Math. 2 (2010), no. 3, 38–46.