Research and Innovation Articles
An application of weakly contractive mappings to boundary value problems of interval-valued functions
Published 2014-05-22
Keywords
- Contractive functions,
- interval-valued functions,
- differentiability interval-valued functions,
- differential equations interval-valued.
How to Cite
Angulo Castillo, V. (2014). An application of weakly contractive mappings to boundary value problems of interval-valued functions. Revista Integración, Temas De matemáticas, 32(1), 27–37. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4061
Abstract
We study the existence and uniqueness of solutions for boundary value problems associated to differential equations of interval-valued functions, by using the derivative of Hukuhara and some fixed point theorems for weakly contractive mappings defined on partially ordered sets.
To cite this article: V. Angulo-Castillo, Una aplicación de las funciones débilmente contractivas a problemas de valor en la frontera de funciones con valores en intervalos, Rev. Integr. Temas Mat. 32 (2014), no. 1, 27–37.
Downloads
Download data is not yet available.
References
- Aubin J.P. and Cellina A., Differential Inclusions, Springer-Verlag, New York, 1984.
- Aubin J.P. and Franskowska H., Set-Valued Analysis, Birkhäuser, Boston, 1990.
- Aubin J.P. and Franskowska H., “Set-valued analysis in control theory”, Set-Valued Anal. 8 (2000), 1–9.
- Banks H.T. and Jacobs M.Q., “A differential calculus for multifunctions”, J. Math. Anal. Appl., 29 (1970), 246–272.
- Folland G., Real Analysis. Pure and Applied Mathematics, John Wiley & Sons Inc., New York, 1999.
- Dhutta P.N. and Choudhury B.S., “A generalization of contraction principle in metric spaces”, Fixed Point Theory Appl. (2008), 8 p.
- Goetschel R. and Voxman W., “Elementary fuzzy calculus”, Fuzzy Sets and Systems 18 (1986), 31–43.
- Harjani J. and Sadarangani K., “Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations”, Nonlinear Anal. 72 (2010), 1188–1197.
- [Revista Integración
- Una aplicación de las funciones débilmente contractivas 37
- Hukuhara M., “Intégration des applications measurables dont la valeur est un compact convexe”, Funkcial. Ekvac. 10 (1967), 205–223.
- Kaleva O., “Fuzzy differential equations”, Fuzzy Sets and Systems 24 (1987), 301–317.
- Kaleva O., “A note on fuzzy differential equations”, Nonlinear Anal. 64 (2006), 895–900.
- Moore R.E., Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
- Moore R.E., Computational Functional Analysis, Ellis Horwood Limited, England, 1985.
- Negoita C.V. and Ralescu D., Applications of Fuzzy Sets to Systems Analysis, Wiley, New York, 1975.
- Nieto J.J. and Rodríguez-López R., “Applications of contractive-like mapping principles to fuzzy equations”, Rev. Mat. Complut. 19 (2006), 361–383.
- Nieto J.J. and Rodríguez-López R., “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations”, Order 22 (2005), 223–239.
- Nieto J.J. and Rodríguez-López R., “Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations”, Acta Math. Sin. (Engl.Ser.) 23 (2007), 2205–2212.
- Puri M. and Ralescu D., “Fuzzy random variables”, J. Math. Anal. Appl. 114 (1986), 409– 422.
- Puri M. and Ralescu D., “Differential of fuzzy functions”, J. Math. Anal. Appl. 91 (1983), 552–558.
- Rhoades B.E., “Some theorems on weakly contractive maps”, Nonlinear Anal. 47 (2001), 2683–2693.
- Zadeh L.A., “Fuzzy sets”, Infor. and Control 8 (1965), 338–353.