Revista Integración, temas de matemáticas.
Vol. 32 No. 1 (2014): Revista Integración, temas de matemáticas
Research and Innovation Articles

An application of weakly contractive mappings to boundary value problems of interval-valued functions

Vladimir Angulo Castillo
Universidad Industrial de Santander
Bio

Published 2014-05-22

Keywords

  • Contractive functions,
  • interval-valued functions,
  • differentiability interval-valued functions,
  • differential equations interval-valued.

How to Cite

Angulo Castillo, V. (2014). An application of weakly contractive mappings to boundary value problems of interval-valued functions. Revista Integración, Temas De matemáticas, 32(1), 27–37. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4061

Abstract

We study the existence and uniqueness of solutions for boundary value problems associated to differential equations of interval-valued functions, by using the derivative of Hukuhara and some fixed point theorems for weakly contractive mappings defined on partially ordered sets.

To cite this article: V. Angulo-Castillo, Una aplicación de las funciones débilmente contractivas a problemas de valor en la frontera de funciones con valores en intervalos, Rev. Integr. Temas Mat. 32 (2014), no. 1, 27–37.

 

Downloads

Download data is not yet available.

References

  1. Aubin J.P. and Cellina A., Differential Inclusions, Springer-Verlag, New York, 1984.
  2. Aubin J.P. and Franskowska H., Set-Valued Analysis, Birkhäuser, Boston, 1990.
  3. Aubin J.P. and Franskowska H., “Set-valued analysis in control theory”, Set-Valued Anal. 8 (2000), 1–9.
  4. Banks H.T. and Jacobs M.Q., “A differential calculus for multifunctions”, J. Math. Anal. Appl., 29 (1970), 246–272.
  5. Folland G., Real Analysis. Pure and Applied Mathematics, John Wiley & Sons Inc., New York, 1999.
  6. Dhutta P.N. and Choudhury B.S., “A generalization of contraction principle in metric spaces”, Fixed Point Theory Appl. (2008), 8 p.
  7. Goetschel R. and Voxman W., “Elementary fuzzy calculus”, Fuzzy Sets and Systems 18 (1986), 31–43.
  8. Harjani J. and Sadarangani K., “Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations”, Nonlinear Anal. 72 (2010), 1188–1197.
  9. [Revista Integración
  10. Una aplicación de las funciones débilmente contractivas 37
  11. Hukuhara M., “Intégration des applications measurables dont la valeur est un compact convexe”, Funkcial. Ekvac. 10 (1967), 205–223.
  12. Kaleva O., “Fuzzy differential equations”, Fuzzy Sets and Systems 24 (1987), 301–317.
  13. Kaleva O., “A note on fuzzy differential equations”, Nonlinear Anal. 64 (2006), 895–900.
  14. Moore R.E., Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
  15. Moore R.E., Computational Functional Analysis, Ellis Horwood Limited, England, 1985.
  16. Negoita C.V. and Ralescu D., Applications of Fuzzy Sets to Systems Analysis, Wiley, New York, 1975.
  17. Nieto J.J. and Rodríguez-López R., “Applications of contractive-like mapping principles to fuzzy equations”, Rev. Mat. Complut. 19 (2006), 361–383.
  18. Nieto J.J. and Rodríguez-López R., “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations”, Order 22 (2005), 223–239.
  19. Nieto J.J. and Rodríguez-López R., “Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations”, Acta Math. Sin. (Engl.Ser.) 23 (2007), 2205–2212.
  20. Puri M. and Ralescu D., “Fuzzy random variables”, J. Math. Anal. Appl. 114 (1986), 409– 422.
  21. Puri M. and Ralescu D., “Differential of fuzzy functions”, J. Math. Anal. Appl. 91 (1983), 552–558.
  22. Rhoades B.E., “Some theorems on weakly contractive maps”, Nonlinear Anal. 47 (2001), 2683–2693.
  23. Zadeh L.A., “Fuzzy sets”, Infor. and Control 8 (1965), 338–353.