Revista Integración, temas de matemáticas.
Vol. 32 No. 1 (2014): Revista Integración, temas de matemáticas
Research and Innovation Articles

Nemytskii operator on generalized bounded variation space

René Erlín Castillo
Universidad Nacional de Colombia
Humberto Rafeiro
Pontificia Universidad Javeriana
Eduard Trousselot
Universidad de Oriente

Published 2014-05-22

Keywords

  • Riesz p-variation,
  • (φ, α)-bounded variation

How to Cite

Castillo, R. E., Rafeiro, H., & Trousselot, E. (2014). Nemytskii operator on generalized bounded variation space. Revista Integración, Temas De matemáticas, 32(1), 71–90. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4064

Abstract

In this paper we show that if the Nemytskii operator maps the (φ, α)-bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the (φ, α)-bounded variation space such that f (t, y) = g(t)y + h(t) for all t ∈ [a, b], y ∈ R.

To cite this article: R. E. Castillo, H. Rafeiro, E. Trousselot, Nemytskii operator on generalized bounded variation space, Rev. Integr. Temas Mat. 32 (2014), no. 1, 71–90.

 

Downloads

Download data is not yet available.

References

  1. Appell J. and Zabrejko P.P., Nonlinear superposition operators, Cambridge University Press, 1990.
  2. Castillo R.E., Rafeiro H. and Trousselot E., “On functions of (φ, α)-bounded variation”, (2013), submitted.
  3. Castillo R.E. and Trousselot E., “On Functions of (p, α)-Bounded Variation”, Real Anal. Exchange 34 (2008), no. 1, 49–60.
  4. Chakvabarty M.C., “Some result on AC-w-functions”, Fundamenta Mathematica LXIV (1969), 219–230.
  5. Chistyakov V.V., “Generalized variation of mappings and applications”, Real Anal. Exchange 25 (1999–2000), no. 1, 61–64.
  6. Chistyakov V.V., “On mappings o finite generalized variation and nonlinear operators”, Real Anal. Exchange 24th Summer Symp. Conf. Reports (2000), 39–43.
  7. Chistyakov V.V., “Lipschitzian superposition operators between spaces of functions of bounded generalized variation with weight”, J. Appl. Anal. 6 (2000), no. 2, 173–
  8. Chistyakov V.V., “Generalized variation of mappings with applications to composition operators and multifunctions”, Positivity 5 (2001), no. 4, 323–358.
  9. Chistyakov V.V., “Superposition operators in the algebra of functions of two variables with finite total variation”, Monatsh. Math. 137 (2002), no. 2, 99–114.
  10. Chistyakov V.V., “Metric semigroups and cones of mappings of inite variation of several variables and multivalued superposition operators”, (Russian), Dokl. Akad.
  11. Nauk 393 (2003), no. 6, 757–761. English translation: Dokl. Math. Sci. 68, 6/2 (2003).
  12. Cybertowicz Z. and Matuszewska W., “Functions of bounded generalized variations”, Commentat. Math. 20 (1977), 29–52.
  13. Halmos P., Measure Theory, Springer-Verlag, 1974.
  14. Hudjaev S.I. and Vol’pert A.I., Analysis in classes of discontinuous functions and equations of mathematical physics, Springer, 1985.
  15. Jeffery R.L., “Generalized integrals with respect to bounded variation”, Canadian Journal of Mathematics 10 (1958), 617–625.
  16. Jordan C., “Sur la série de Fourier”, C.R. Acad. Sci. Paris 2 (1881), 228–230.
  17. Merentes N. and Rivas S., “El operador de composición con algún tipo de variación acotada”. IX Escuela Venezolana de Matemática A:M:V-IVIC, 1996.
  18. Krasnosel’skii M.A. and Rutickii Ya.B., Convex Functions and Orlicz Spaces, Groningen: P.Noordhoff Ltd, 1961.
  19. Maligranda L. and Orlicz W., “On some properties of Functions of Generalized Variation”, Monatshift für Mathematik 104 (1987), 53–65.
  20. Matkowski J., “Functional equations and Nemytskii operators”, Funkc. Ekvacioj Ser. Int. 25 (1982), 127–132.
  21. Matkowski J., “Form of Lipschitz operators of substitution in Banach spaces of differentiable functions”, Sci. Bull. Lodz Tech. Univ. 17 (1984), 5–10.
  22. Matkowski J., “On Nemytskii operator”, Math. Japon. 33 (1988), no. 1, 81–86.
  23. Matkowski J., “Lipschitzian composition operators in some function spaces”, Nonlinear Anal. 30 (1997), no. 2, 719–726.
  24. Matkowski J. and Merentes N., “Characterization of globally Lipschitzian composition operators in the Banach space BV 2 p [a, b]”, Archivum Math. 28 (1992), no. 3-4,
  25. –186.
  26. Matkowski J. and Miś J., “On a characterization of Lipschitzian operators of substitution in the space BV a, b”, Math. Nachr. 117 (1984), 155–159.
  27. Merentes N. and Nikodem K., “On Nemytskii operator and set-valued functions of bounded p-variation”, Rad. Mat. 8 (1992), no. 1, 139–145.
  28. Merentes N. and Rivas S., “On characterization of the Lipschitzian composition operator between spaces of functions of bounded p-variation”, Czechoslovak Math. J. 45 (1995), no. 4, 627–637.
  29. Riesz F., “Untersuchungen über systeme integrierbarer funktionen”, Mathematische Annalen. 69 (1910), 449-497.
  30. Riesz F. and Nagy B., Functional Analysis (translated from the second french edition), Ungar, New York, 1955.
  31. Smajdor A. and Smajdor W., “Jensen equation and Nemytskii operator for set-valued functions”, Rad. Mat. 5 (1989), 311–320.
  32. Smajdor W., “Note on Jensen and Pexider functional equations”, Demonstratio Math. 32 (1999), no. 2, 363–376.
  33. Zawadzka G., “On Lipschitzian operators of substitution in the space of set-valued functions of bounded variation”, Rad. Mat. 6 (1990), 279–293.