On the continuity of the map square root of nonnegative isomorphisms in Hilbert spaces
Published 2015-05-21
Keywords
- Nonnegative operators,
- functions of operators,
- Hilbert spaces,
- spectral theory
How to Cite
Abstract
Let H be a real (or complex) Hilbert space. Every nonnegative operator L ∈ L(H) admits a unique nonnegative square root R ∈ L(H), i.e., a nonnegative operator R ∈ L(H) such that R2 = L. Let GL+S (H) be the set of nonnegative isomorphisms in L(H). First we will show that GL+S (H) is a convex (real) Banach manifold. Denoting by L1/2 the nonnegative square root of L. In [3], Richard Bouldin proves that L1/2 depends continuously on L (this proof is non-trivial). This result has several applications. For example, it is used to find the polar decomposition of a bounded operator. This polar decomposition allows us to determine the positive and negative spectral subespaces of any self-adjoint operator, and moreover, allows us to define the Maslov index. The autor of the paper under review provides an alternative proof (and a little more simplified) that L1/2 depends continuously on L, and moreover, he shows that the map
R : GL+S (H) → GL+S (H)
L → L1/2
is a homeomorphism.
To cite this article: J.J. Muentes Acevedo, On the continuity of the map square root of nonnegative isomorphisms in Hilbert spaces, Rev. Integr. Temas Mat. 33 (2015), no. 1, 11-26.Downloads
References
- Bachman G. and Narici L., Functional Analysis, Reprint of the 1966 original. Dover Publications, Inc., Mineola, New York, 2000.
- Bernardes N.C. e Fernandez C.S., Introdução às funções de uma variável complexa, textos Universitários, Sociedade Brasileira de Matemática, 2008.
- Bouldin R., “The Norm Continuity Properties of Square Roots”, SIAM J. Math. Anal. 3 (1972), 206-210.
- Conway J.B., Functions of One Complex Variable, Graduate Texts in Mathematics, 11, Springer-Verlag, New York-Heidelberg, 1973.
- Fabian M., Habala P., Hájek P., Montesinos V., Pelant J. and Zizler V., Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Mathematics, 8, Springer-Verlag, New
- York, 2001.
- Fitzpatrick P.M., Pejsachowicz J. and Recht L., “Spectral flow and bifurcation of critical points of strongly-indefinite functionals. I. General theory”, J. Funct. Anal. 162 (1999), no.
- , 52-95.
- Kato T., Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer-Verlag, Berlín-New York, 1976.
- Knopp K., Theory of Functions, I, Elements of the General Theory of Analytic Functions, Dover Publications, New York, 1945.
- Kreyszig E., Introductory Functional Analysis with Applications, John Wiley & Sons, New York-London-Sydney, 1978.
- Long Y., “A Maslov type index theory for sympletics paths”, Topol. Methods Nonlinear Anal. 10 (1997), no. 1, 47-78.
- Schechter M., Principles of Functional Analysis, Second Edition, Graduate Studies in Mathematics, 36, American Mathematical Society, Providence, RI, 2002.
- Taylor A.E., Introduction to Functional Analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958.