Revista Integración, temas de matemáticas.
Vol. 33 No. 1 (2015): Revista Integración, temas de matemáticas
Research and Innovation Articles

On the continuity of the map square root of nonnegative isomorphisms in Hilbert spaces

Jeovanny de Jesus Muentes Acevedo
Universidade de São Paulo

Published 2015-05-21

Keywords

  • Nonnegative operators,
  • functions of operators,
  • Hilbert spaces,
  • spectral theory

How to Cite

Muentes Acevedo, J. de J. (2015). On the continuity of the map square root of nonnegative isomorphisms in Hilbert spaces. Revista Integración, Temas De matemáticas, 33(1), 11–26. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4766

Abstract

Let H be a real (or complex) Hilbert space. Every nonnegative operator L ∈ L(H) admits a unique nonnegative square root R ∈ L(H), i.e., a nonnegative operator R ∈ L(H) such that R2 = L. Let GL+S (H) be the set of nonnegative isomorphisms in L(H). First we will show that GL+S (H) is a convex (real) Banach manifold. Denoting by L1/2 the nonnegative square root of L. In [3], Richard Bouldin proves that L1/2 depends continuously on L (this proof is non-trivial). This result has several applications. For example, it is used to find the polar decomposition of a bounded operator. This polar decomposition allows us to determine the positive and negative spectral subespaces of any self-adjoint operator, and moreover, allows us to define the Maslov index. The autor of the paper under review provides an alternative proof (and a little more simplified) that L1/2 depends continuously on L, and moreover, he shows that the map

R : GL+S (H) → GL+S (H)
L → L1/2

is a homeomorphism.

To cite this article: J.J. Muentes Acevedo, On the continuity of the map square root of nonnegative isomorphisms in Hilbert spaces, Rev. Integr. Temas Mat. 33 (2015), no. 1, 11-26.

Downloads

Download data is not yet available.

References

  1. Bachman G. and Narici L., Functional Analysis, Reprint of the 1966 original. Dover Publications, Inc., Mineola, New York, 2000.
  2. Bernardes N.C. e Fernandez C.S., Introdução às funções de uma variável complexa, textos Universitários, Sociedade Brasileira de Matemática, 2008.
  3. Bouldin R., “The Norm Continuity Properties of Square Roots”, SIAM J. Math. Anal. 3 (1972), 206-210.
  4. Conway J.B., Functions of One Complex Variable, Graduate Texts in Mathematics, 11, Springer-Verlag, New York-Heidelberg, 1973.
  5. Fabian M., Habala P., Hájek P., Montesinos V., Pelant J. and Zizler V., Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Mathematics, 8, Springer-Verlag, New
  6. York, 2001.
  7. Fitzpatrick P.M., Pejsachowicz J. and Recht L., “Spectral flow and bifurcation of critical points of strongly-indefinite functionals. I. General theory”, J. Funct. Anal. 162 (1999), no.
  8. , 52-95.
  9. Kato T., Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer-Verlag, Berlín-New York, 1976.
  10. Knopp K., Theory of Functions, I, Elements of the General Theory of Analytic Functions, Dover Publications, New York, 1945.
  11. Kreyszig E., Introductory Functional Analysis with Applications, John Wiley & Sons, New York-London-Sydney, 1978.
  12. Long Y., “A Maslov type index theory for sympletics paths”, Topol. Methods Nonlinear Anal. 10 (1997), no. 1, 47-78.
  13. Schechter M., Principles of Functional Analysis, Second Edition, Graduate Studies in Mathematics, 36, American Mathematical Society, Providence, RI, 2002.
  14. Taylor A.E., Introduction to Functional Analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958.