Revista Integración, temas de matemáticas.
Vol. 33 No. 2 (2015): Revista Integración
Research and Innovation Articles

Finite representation of compact manifolds

Carlos Mario Parra
Universidad Nacional de Colombia
Johany Suárez Ramírez
Universidad Nacional de Colombia

Published 2015-12-04

Keywords

  • Computability and recursion theory,
  • algorithmic topology,
  • smooth manifolds

How to Cite

Parra, C. M., & Suárez Ramírez, J. (2015). Finite representation of compact manifolds. Revista Integración, Temas De matemáticas, 33(2), 97–105. https://doi.org/10.18273/revint.v33n2-2015001

Abstract

A remarkable achievement of algorithmic topology is A.A.Markov’s theorem on the unsolvability of the homeomorphism problem for manifolds. Boone, Haken and Poénaru extended Markov’s original proof to the case of closed smooth manifolds. One of their initial difficulties was the introduction of a natural finite representation of a differentiable and/or combinatorial manifold. In this paper we extend this representation to compact smooth manifolds and propose an extension to smooth manifolds.

To cite this article: C.M Parra, J. Suárez Ramírez, Representación finita de variedades compactas, Rev. Integr. Temas Mat. 33 (2015), No. 2, 97–105.

Downloads

Download data is not yet available.

References

  1. Aschenbrenner M., Friedl S. and Wilton H., “Decision problems for 3-manifolds and their fundamental groups”, Department of Mathematics, UCLA. http://www.math.ucla.edu/~matthias/publications.html [citado 11 de agosto de 2015].
  2. Bessières L., Besson G., Maillot S., Boileau M. and Porti J., Geometrisation of 3-manifolds, EMS Tracts in Mathematics, 13, European Mathematical Society (EMS), Zürich, 2010.
  3. Boone W.W., Haken W. and Poénaru V., “On recursively unsolvable problems in topology and their classification”, in Contributions to Math. Logic (Colloquium, Hannover, 1966) (ed. Schmidt H.A. et al.), North-Holland (1968), 37–74.
  4. Bryant J.L., “Piecewise linear topology”, in Handbook of Geometric Topology (ed. Daverman R.J. and Sher R.B.), North-Holland (2002), 219–259.
  5. Cairns S.S., “Triangulation of the manifold of class one”, Bull. Amer. Math. Soc. 41 (1935), No. 8, 549–552.
  6. Cairns S.S., “A simple triangulation method for smooth manifolds”, Bull. Amer. Math. Soc. 67 (1961), No. 4, 389–390.
  7. Chernavsky A.V. and Leksine V.P., “Unrecognizability of manifolds”, Ann. Pure Appl. Logic. 141 (2006), No. 3, 325–335.
  8. Markov A.A., “Insolubility of the problem of homeomorphy” (Russian), in Proc. Internat. Congress Math. 1958 (ed. Todd J.A.), Cambridge Univ. Press, New York (1960), 300–306.
  9. Milnor J.W., “On the relationship between differentiable manifolds and combinatorial manifolds” (unpublished notes), Princeton University (1956). Department of Mathematics,
  10. Texas Christian University. http://faculty.tcu.edu/gfriedman/notes/milnor3.pdf
  11. [citado 11 de agosto de 2015].
  12. Munkres J.R., Elementary Differential Topology, Princeton University Press, Princeton, NJ, 1966.
  13. Nabutovsky A., “Einstein structures: Existence versus uniqueness”, Geom. Funct. Anal. 5 (1995), No. 1, 76–91.
  14. Nabutovsky A. and Weinberger S., “Algorithmic unsolvability of the triviality problem for multidimensional knots”, Comment. Math. Helv. 71 (1996), No. 1, 426–434.
  15. Nash J., “Real algebraic manifolds”, Ann. of Math. (2) 56 (1952), No. 3, 405–421.
  16. Soare R.I., “Computability theory and differential geometry”, Bull. Symbolic Logic. 10 (2004), No. 4, 457–486.
  17. Whitehead J.H.C., “On C1-Complexes”, Ann. of Math. (2) 41 (1940), No. 4, 809–824.