Revista Integración, temas de matemáticas.
Vol. 33 No. 2 (2015): Revista Integración
Research and Innovation Articles

The problem of the first return attached to a pseudodifferential operator in dimension 3

Oscar F. Casas-Sánchez
Universidad de los Andes
Jeanneth Galeano-Peñaloza
Universidad Nacional de Colombia
John J. Rodríguez-Vega
Universidad Nacional de Colombia

Published 2015-12-04

Keywords

  • Random walks,
  • ultradiffusion,
  • p-adic numbers,
  • non-archimedean analysis

How to Cite

Casas-Sánchez, O. F., Galeano-Peñaloza, J., & Rodríguez-Vega, J. J. (2015). The problem of the first return attached to a pseudodifferential operator in dimension 3. Revista Integración, Temas De matemáticas, 33(2), 107–119. https://doi.org/10.18273/revint.v33n2-2015002

Abstract

In this article we study the problem of first return associated to an elliptic pseudodifferential operator with non-radial symbol of dimension 3 over the p-adics.

To cite this article: O.F. Casas-Sánchez, J. Galeano-Peñaloza, J.J. Rodríguez-Vega, The problem of the first return attached to a pseudodifferential operator in dimension 3, Rev. Integr. Temas Mat. 33 (2015), No. 2, 107–119.

Downloads

Download data is not yet available.

References

  1. Albeverio S., Khrennikov A.Y. and Shelkovich V.M., Theory of p-adic distributions: linear and nonlinear models, London Mathematical Society Lecture Note Series, 370, Cambridge
  2. University Press, Cambridge, 2010.
  3. Avetisov V.A. and Bikulov A.K., “On the ultrametricity of the fluctuation dynamic mobility of protein molecules” (Russian) Tr. Mat. Inst. Steklova 265 (2009), Izbrannye Voprosy
  4. Matematicheskaya Fiziki i p-adicheskaya Analiza, 82–89; translation in Proc. Steklov Inst. Math. 265 (2009), No. 1, 75–81.
  5. Avetisov V.A., Bikulov A.K. and Kozyrev S.V., “Description of logarithmic relaxation by a model of a hierarchical random walk”, (Russian) Dokl. Akad. Nauk 368 (1999), No. 2, 164–167.
  6. Avetisov V.A., Bikulov A.K. and Zubarev A.P., “First passage time distribution and the number of returns for ultrametric random walks”, J. Phys. A 42 (2009), No. 8, 18 pp.
  7. Casas-Sánchez O.F., Galeano-Peñaloza J. and Rodríguez-Vega J.J., “Parabolic-type pseudodifferential
  8. equations with elliptic symbols in dimension 3 over p-adics”, p-Adic Numbers Ultrametric Anal. Appl. 7 (2015), No. 1, 1–16.
  9. Chacón-Cortés L.F., “The problem of the first passage time for some elliptic pseudodifferential operators over the p-adics”, Rev. Colombiana Mat. 48 (2014), No. 2, 191–209.
  10. Chacón-Cortés L.F. and Zúñiga-Galindo W.A., “Nonlocal operators, parabolic-type equations, and ultrametric random walks”, J. Math. Phys. 54 (2013), No. 11, 17 pp.
  11. Dynkin E.B., Markov processes Vol. I. Die Grundlehren der Mathematischen Wissenschaften, Bände 121, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg 1965.
  12. Kochubei A.N., Pseudo-differential equations and stochastics over non-Archimedian fields. Monographs and Textbooks in Pure and Applied Mathematics, 244. Marcel Dekker, Inc.,New York, 2001.
  13. Vladimirov V.S., Volovich I.V. and Zelenov E.I., p-adic analysis and mathematical physics. Series on Soviet and East European Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
  14. Zúñiga-Galindo W.A., “Parabolic equations and Markov processes over p-adic fields”, Potential Anal. 28 (2008), No. 2, 185–200