Research and Innovation Articles
The problem of the first return attached to a pseudodifferential operator in dimension 3
Published 2015-12-04
Keywords
- Random walks,
- ultradiffusion,
- p-adic numbers,
- non-archimedean analysis
How to Cite
Casas-Sánchez, O. F., Galeano-Peñaloza, J., & Rodríguez-Vega, J. J. (2015). The problem of the first return attached to a pseudodifferential operator in dimension 3. Revista Integración, Temas De matemáticas, 33(2), 107–119. https://doi.org/10.18273/revint.v33n2-2015002
Abstract
In this article we study the problem of first return associated to an elliptic pseudodifferential operator with non-radial symbol of dimension 3 over the p-adics.
To cite this article: O.F. Casas-Sánchez, J. Galeano-Peñaloza, J.J. Rodríguez-Vega, The problem of the first return attached to a pseudodifferential operator in dimension 3, Rev. Integr. Temas Mat. 33 (2015), No. 2, 107–119.
Downloads
Download data is not yet available.
References
- Albeverio S., Khrennikov A.Y. and Shelkovich V.M., Theory of p-adic distributions: linear and nonlinear models, London Mathematical Society Lecture Note Series, 370, Cambridge
- University Press, Cambridge, 2010.
- Avetisov V.A. and Bikulov A.K., “On the ultrametricity of the fluctuation dynamic mobility of protein molecules” (Russian) Tr. Mat. Inst. Steklova 265 (2009), Izbrannye Voprosy
- Matematicheskaya Fiziki i p-adicheskaya Analiza, 82–89; translation in Proc. Steklov Inst. Math. 265 (2009), No. 1, 75–81.
- Avetisov V.A., Bikulov A.K. and Kozyrev S.V., “Description of logarithmic relaxation by a model of a hierarchical random walk”, (Russian) Dokl. Akad. Nauk 368 (1999), No. 2, 164–167.
- Avetisov V.A., Bikulov A.K. and Zubarev A.P., “First passage time distribution and the number of returns for ultrametric random walks”, J. Phys. A 42 (2009), No. 8, 18 pp.
- Casas-Sánchez O.F., Galeano-Peñaloza J. and Rodríguez-Vega J.J., “Parabolic-type pseudodifferential
- equations with elliptic symbols in dimension 3 over p-adics”, p-Adic Numbers Ultrametric Anal. Appl. 7 (2015), No. 1, 1–16.
- Chacón-Cortés L.F., “The problem of the first passage time for some elliptic pseudodifferential operators over the p-adics”, Rev. Colombiana Mat. 48 (2014), No. 2, 191–209.
- Chacón-Cortés L.F. and Zúñiga-Galindo W.A., “Nonlocal operators, parabolic-type equations, and ultrametric random walks”, J. Math. Phys. 54 (2013), No. 11, 17 pp.
- Dynkin E.B., Markov processes Vol. I. Die Grundlehren der Mathematischen Wissenschaften, Bände 121, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg 1965.
- Kochubei A.N., Pseudo-differential equations and stochastics over non-Archimedian fields. Monographs and Textbooks in Pure and Applied Mathematics, 244. Marcel Dekker, Inc.,New York, 2001.
- Vladimirov V.S., Volovich I.V. and Zelenov E.I., p-adic analysis and mathematical physics. Series on Soviet and East European Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
- Zúñiga-Galindo W.A., “Parabolic equations and Markov processes over p-adic fields”, Potential Anal. 28 (2008), No. 2, 185–200