Revista Integración, temas de matemáticas.
Vol. 33 No. 2 (2015): Revista Integración
Research and Innovation Articles

Groenewold-von Neumann product via Segal-Bargmann transform

John B. Moreno
Universidad del Atlántico

Published 2015-12-04

Keywords

  • Geometric quantization,
  • star product,
  • Segal-Bargmann transform,
  • Fock spaces

How to Cite

Moreno, J. B. (2015). Groenewold-von Neumann product via Segal-Bargmann transform. Revista Integración, Temas De matemáticas, 33(2), 135–144. https://doi.org/10.18273/revint.v33n2-2015004

Abstract

Using standard techniques from geometric quantization, we re-derive the product of functions on R2 which was first introduced by von Neumann and later reintroduced by Groenewold and which is the integral version of the Moyal product. More specifically, by pairing the diagonal real polarization on the pair groupoid R2 × R2 with its standard holomorphic polarization, we obtain the well-known Segal-Bargmann transform in a rotated and scaled (and half-conjugated) form. Together with a convolution of functions in the Segal-Bargmann space, which is a natural deformation of the usual convolution of functions on the pair groupoid, this defines the Groenewold-von Neumann product on L2(R2).

To cite this article: J.B. Moreno, Groenewold-von Neumann product via Segal-Bargmann transform, Rev.
Integr. Temas Mat. 33 (2015), No. 2, 135–144.



Downloads

Download data is not yet available.

References

  1. Bargmann V., “On a Hilbert space of analytis funstions and an associated integral transform”, Comm. Pure Appl. Math. 14 (1961), 187–214.
  2. Daubechies I. and Grossmann A., “An Integral transform related to quantization”, J. Math. Phys. 21 (1980), No. 8, 2080–2090.
  3. Daubechies I., Grossmann A. and Reignier J., “An Integral transform related to quantization. II. Some mathematical properties”, J. Math. Phys. 24 (1983), No. 2, 239–254.
  4. de M. Rios P. and Ozorio de Almeida A., “A variational principle for actions on symmetric symplectic spaces”, J. Geom. Phys. 51 (2004), No. 4, 404–441.
  5. Gracia-Bondía J.M. and Várilly J.C., “From geometric quantization to Moyal quantization”, J. Math. Phys. 36 (1995), No. 6, 2691–2701.
  6. Folland G.B., Harmonic analysis on phase space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, NJ, 1989.
  7. Guillemin V. and Sternberg S., Geometric Asymptotics, American Mathematical Society, Providence, RI, 1977.
  8. Hall B.C., “Geometric quantization and the generalized Segal-Bargamann transform for Lie groups of compact type”, Comm. Math. Phys. 226 (2002), No. 2, 233–268.
  9. Hall B.C., “Holomorphic methods in analysis and mathematical physics”, in First Summer School in Analysis and Mathematical Physics (Cuernavaca Morelos, 1998), Contemp.
  10. Math., 260, Amer. Math. Soc., Providence, RI (2000), 1–59.
  11. Moreno J.B., “Construção geométrica de “star product” integral em espaços simpléticos simétricos não compactos” (Portuguese), Thesis (Ph.D), Universidade de São Paulo, São
  12. Paulo, 2013, 181 p.
  13. von Neumann J., “Die Eindeutigkeit der Schrodingerschen Operatoren” (German), Math. Ann. 104 (1931), No. 1, 570–578.
  14. Puta M., Hamiltonian mechanical systems and geometric quantization, Kluwer Academic Publishers Group, Dordrecht, 1993.
  15. Rios P. de M. and Tuynman G.M., Weyl quantization from geometric quantization, AIP Conf. Proc., 1079 (2008), 26–38.
  16. Woodhouse N., Geometric quantization, The Clarendon Press, Oxford, 1980.