Revista Integración, temas de matemáticas.
Vol. 33 No. 2 (2015): Revista Integración
Research and Innovation Articles

Numerical solution of the non-local Black-Scholes model by means of discrete mollification

Carlos D. Acosta
Universidad Nacional de Colombia
Fernán C. Osorio
Universidad Nacional de Colombia

Published 2015-12-04

Keywords

  • Black-Scholes,
  • finite differences,
  • discrete mollification

How to Cite

Acosta, C. D., & Osorio, F. C. (2015). Numerical solution of the non-local Black-Scholes model by means of discrete mollification. Revista Integración, Temas De matemáticas, 33(2), 145–160. https://doi.org/10.18273/revint.v33n2-2015005

Abstract

The objective of this paper is to study a numerical approximation of a non-local Black-Scholes equation, by means of techniques of discrete mollification and finite differences. We analyze stability of the proposed numerical scheme through monotony and show examples that illustrate its  capabilities.

To cite this article: C.D. Acosta, F.C. Osorio, Solución numérica del modelo Black-Scholes no local por molificación discreta, Rev. Integr. Temas Mat. 33 (2015), No. 2, 145–160.

 

Downloads

Download data is not yet available.

References

  1. Acosta C.D. and Mejía C.E., “A mollification based operator splitting method for convection diffusion equations”, Comput. Math. Appl. 59 (2010), No. 4, 1397–1408.
  2. Acosta C.D. and Mejía C.E., “Approximate solution of hyperbolic conservation laws by discrete mollification”, Appl. Numer. Math. 59 (2009), No. 9, 2256–2265.
  3. Acosta C.D. and Mejía C.E., “Stabilization of explicit methods for convection diffusion equations by discrete mollification”, Comput. Math. Appl. 55 (2008), No. 3, 368–380.
  4. Acosta C.D, Büger R. and Mejía C.E., “Monotone difference schemes stabilized by discrete mollification for strongly degenerate parabolic equations”, Numer. Methods Partial
  5. Differential Equations. 28 (2012), No. 1, 38–62.
  6. Andreu-Vaillo F., Mazón J.M., Rossi J.D. and Toledo-Melero J.J., Nonlocal diffusion problems, Mathematical Surveys and Monographs, 165, 2010.
  7. Bogoya M. and Gómez C.A., “Modelo discreto para una ecuación de difusión no local”, Rev. Colombiana Mat. 47 (2013), No. 1, 83–94.
  8. Bhowmik S.K., “Fast and efficient numerical methods for an extended Black-Scholes model”, Comput. Math. Appl. 67 (2014), No. 3, 636–654.
  9. Bhowmik S.K., “Stability and convergence analysis of a one step approximation of a Linear partial integro-differential equation”, Numer. Methods Partial Differential Equations. 27
  10. (2011), No. 5, 1179–1200.
  11. Pérez-Llanos M. and Rossi J.D., “Numerical approximations for a nonlocal evolution equation”, SIAM J. Numer. Anal. 49 (2011), No. 5, 2103–2123.