Research and Innovation Articles
Published 2015-12-04
Keywords
- Sidon sets,
- B2 sets,
- Golomb ruler
How to Cite
Caicedo, Y., Martos, C. A., & Trujillo, C. A. (2015). g-Golomb Rulers. Revista Integración, Temas De matemáticas, 33(2), 161–172. https://doi.org/10.18273/revint.v33n2-2015006
Abstract
A set of positive integers A is called a g-Golomb ruler if the difference between two distinct elements of A is repeated at most g times. This definition is a generalization of the Golomb ruler (g = 1). In this paper we construct g-Golomb ruler from Golomb ruler and we prove two theorems about extremal functions associated with this sets.
To cite this article: Y. Caicedo, C.A. Martos, C.A. Trujillo, g-Golomb, Rev. Integr. Temas Mat. 33 (2015), No. 2, 161–172.
Downloads
Download data is not yet available.
References
- Atkinson M.D., Santoro N. and Urrutia J., “Integer Sets with Distinct Sums and Differences and Carrier Frequency Assignments for Nonlinear Repeaters”, IEEE Transactions on Communications 34 (1986), No. 6, 614–617.
- Bose R.C., “An affine analogue of Singer’s theorem”, J. Indian Math. Soc. (N.S.) 6 (1942), 1–15.
- Cilleruelo J., “Sidon sets in Nd”, J. Combin. Theory Ser. A 117 (2010), No. 7, 857–871.
- Dimitromanolakis A., “Analysis of the Golomb Ruler and the Sidon set Problems, and Determination of Large, near-optimal Golomb rulers”. Thesis (Master), Technical University
- of Crete, 2002, 118 p.
- Gómez J., “Construcción de conjuntos Bh[g]”, Tesis (Maestría), Universidad del Valle, Cali, 2011, 69 p.
- Lindström B., “An inequality for B2-sequences”, J. Combinatorial Theory 6 (1969), 211– 212.
- Martin G. and O’Bryant K., “Constructions of generalized Sidon sets”, J. Combin. Theory Ser. A 113 (2006), No. 4, 591–607.
- Ruzsa I., “Solving a linear equation in a set of integers I”, Acta Arith. 65 (1993), No. 3, 259–282.
- Singer J., “A theorem infinite projective geometry and some applications to number theory”, Trans. Amer. Math. Soc. 43 (1938), No. 3, 377–385.
- Tao T. and Vu V.H., Additive Combinatorics, Cambridge University Press, Cambridge, 2006.
- Trujillo C.A., García G. and Velásquez J.M., “B±
- [g] finite sets”, JP J. Algebra Number Theory Appl. 4 (2004), No. 3, 593–604.