Revista Integración, temas de matemáticas.
Vol. 33 No. 2 (2015): Revista Integración
Research and Innovation Articles

g-Golomb Rulers

Yadira Caicedo
Universidad del Tolima
Carlos A. Martos
Universidad del Cauca
Carlos A. Trujillo
Universidad del Cauca

Published 2015-12-04

Keywords

  • Sidon sets,
  • B2 sets,
  • Golomb ruler

How to Cite

Caicedo, Y., Martos, C. A., & Trujillo, C. A. (2015). g-Golomb Rulers. Revista Integración, Temas De matemáticas, 33(2), 161–172. https://doi.org/10.18273/revint.v33n2-2015006

Abstract

A set of positive integers A is called a g-Golomb ruler if the difference between two distinct elements of A is repeated at most g times. This definition is a generalization of the Golomb ruler (g = 1). In this paper we construct g-Golomb ruler from Golomb ruler and we prove two theorems about extremal functions associated with this sets.

To cite this article: Y. Caicedo, C.A. Martos, C.A. Trujillo, g-Golomb, Rev. Integr. Temas Mat. 33 (2015), No. 2, 161–172.

Downloads

Download data is not yet available.

References

  1. Atkinson M.D., Santoro N. and Urrutia J., “Integer Sets with Distinct Sums and Differences and Carrier Frequency Assignments for Nonlinear Repeaters”, IEEE Transactions on Communications 34 (1986), No. 6, 614–617.
  2. Bose R.C., “An affine analogue of Singer’s theorem”, J. Indian Math. Soc. (N.S.) 6 (1942), 1–15.
  3. Cilleruelo J., “Sidon sets in Nd”, J. Combin. Theory Ser. A 117 (2010), No. 7, 857–871.
  4. Dimitromanolakis A., “Analysis of the Golomb Ruler and the Sidon set Problems, and Determination of Large, near-optimal Golomb rulers”. Thesis (Master), Technical University
  5. of Crete, 2002, 118 p.
  6. Gómez J., “Construcción de conjuntos Bh[g]”, Tesis (Maestría), Universidad del Valle, Cali, 2011, 69 p.
  7. Lindström B., “An inequality for B2-sequences”, J. Combinatorial Theory 6 (1969), 211– 212.
  8. Martin G. and O’Bryant K., “Constructions of generalized Sidon sets”, J. Combin. Theory Ser. A 113 (2006), No. 4, 591–607.
  9. Ruzsa I., “Solving a linear equation in a set of integers I”, Acta Arith. 65 (1993), No. 3, 259–282.
  10. Singer J., “A theorem infinite projective geometry and some applications to number theory”, Trans. Amer. Math. Soc. 43 (1938), No. 3, 377–385.
  11. Tao T. and Vu V.H., Additive Combinatorics, Cambridge University Press, Cambridge, 2006.
  12. Trujillo C.A., García G. and Velásquez J.M., “B±
  13. [g] finite sets”, JP J. Algebra Number Theory Appl. 4 (2004), No. 3, 593–604.