Revista Integración, temas de matemáticas.
Vol. 34 No. 1 (2016): Revista Integración
Research and Innovation Articles

L^q estimates of functions in the kernel of an elliptic operator and applications

Gonzalo García Camacho
Universidad del Valle
Liliana Posada Vera
Universidad del Valle

Published 2016-05-06

Keywords

  • Sobolev spaces,
  • conformal deformations,
  • elliptic equations

How to Cite

García Camacho, G., & Posada Vera, L. (2016). L^q estimates of functions in the kernel of an elliptic operator and applications. Revista Integración, Temas De matemáticas, 34(1), 1–21. https://doi.org/10.18273/revint.v34n1-2016001

Abstract

In this work, we will find a family of small functions $\eta_{y}$ in the Kernel of an operator defined in the intersection of the Sobolev space $H^{2,q}(S^{n})$ with the orthogonal complement in $H^{1,2}(S^{n})$ of the first eigenspace of the laplacian on $S^{n}$, parameterized with a variable $y$ belonging to a small ball contained in $B^{n+1}$. We will find $L^{q}$ estimates of these functions and we will use those estimates to find a subcritical solution to the scalar curvature problem on $S^n$, and a solution $u_{y_{1}}=\alpha_{F_{y_{1}}^{-1}}(1+\eta_{y_{1}})=|F_{y_{1}}'|^{\frac{n-2}{2}}(1+\eta_{y_{1}})\circ F_{y_{1}}$ of a nonlinear elliptical problem related to that problem, where $F_{y_{1}}:S^{n}\rightarrow S^{n}$ is a centered dilation.

To cite this article: G. García Camacho, L. Posada Vera, L^q estimates of functions in the kernel of an elliptic operator and applications, Rev. Integr. Temas Mat. 34 (2016), No. 1, 1–21.

Downloads

Download data is not yet available.

References

  1. Bahri A. and Coron J.M., "The scalar-curvature problem on the standard threedimensional sphere", J. Funct. Anal. 95 (1991), No. 1, 106-172.
  2. Chang Sun-Yung A., Gursky M.J. and Yang P.C., "The scalar curvature equation on the 2- and 3-sphere", Calc. Var. Partial Differential Equations 1 (1993), No. 2, 205-229.
  3. Escobar J.F. and García G., "Conformal metrics on the ball with zero scalar curvature and prescribed mean curvature on the boundary", J. Funct. Anal. 211 (2004), No. 1, 71-152.
  4. García G. and Posada V.L., "A priori estimates of the prescribed scalar curvature on the sphere", Revista de Ciencias 19 (2015), No. 1, 73-86.
  5. Han Z.C., "Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent", Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), No. 2, 159-174.
  6. Kazdan J. and Warner F., "Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature", Ann. of Math. (2) 101 (1975), 317-331.
  7. Li Y.Y., "Prescribing scalar curvature on Sn and related problems. I", J. Differential Equations 120 (1995), No. 2, 319-410.
  8. Schoen R. and Zhang D., "Prescribed scalar curvature on the n-sphere", Calc. Var. Partial Differential Equations 4 (1996), No. 1, 1-25.
  9. Zhang D., "New results on geometric variational problems", Thesis (Ph.D), Stanford University, 1990, 85 p.