L^q estimates of functions in the kernel of an elliptic operator and applications
Published 2016-05-06
Keywords
- Sobolev spaces,
- conformal deformations,
- elliptic equations
How to Cite
Copyright (c) 2016 Gonzalo García Camacho, Liliana Posada Vera
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
In this work, we will find a family of small functions $\eta_{y}$ in the Kernel of an operator defined in the intersection of the Sobolev space $H^{2,q}(S^{n})$ with the orthogonal complement in $H^{1,2}(S^{n})$ of the first eigenspace of the laplacian on $S^{n}$, parameterized with a variable $y$ belonging to a small ball contained in $B^{n+1}$. We will find $L^{q}$ estimates of these functions and we will use those estimates to find a subcritical solution to the scalar curvature problem on $S^n$, and a solution $u_{y_{1}}=\alpha_{F_{y_{1}}^{-1}}(1+\eta_{y_{1}})=|F_{y_{1}}'|^{\frac{n-2}{2}}(1+\eta_{y_{1}})\circ F_{y_{1}}$ of a nonlinear elliptical problem related to that problem, where $F_{y_{1}}:S^{n}\rightarrow S^{n}$ is a centered dilation.
To cite this article: G. García Camacho, L. Posada Vera, L^q estimates of functions in the kernel of an elliptic operator and applications, Rev. Integr. Temas Mat. 34 (2016), No. 1, 1–21.
Downloads
References
- Bahri A. and Coron J.M., "The scalar-curvature problem on the standard threedimensional sphere", J. Funct. Anal. 95 (1991), No. 1, 106-172.
- Chang Sun-Yung A., Gursky M.J. and Yang P.C., "The scalar curvature equation on the 2- and 3-sphere", Calc. Var. Partial Differential Equations 1 (1993), No. 2, 205-229.
- Escobar J.F. and García G., "Conformal metrics on the ball with zero scalar curvature and prescribed mean curvature on the boundary", J. Funct. Anal. 211 (2004), No. 1, 71-152.
- García G. and Posada V.L., "A priori estimates of the prescribed scalar curvature on the sphere", Revista de Ciencias 19 (2015), No. 1, 73-86.
- Han Z.C., "Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent", Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), No. 2, 159-174.
- Kazdan J. and Warner F., "Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature", Ann. of Math. (2) 101 (1975), 317-331.
- Li Y.Y., "Prescribing scalar curvature on Sn and related problems. I", J. Differential Equations 120 (1995), No. 2, 319-410.
- Schoen R. and Zhang D., "Prescribed scalar curvature on the n-sphere", Calc. Var. Partial Differential Equations 4 (1996), No. 1, 1-25.
- Zhang D., "New results on geometric variational problems", Thesis (Ph.D), Stanford University, 1990, 85 p.