Published 2016-05-06
Keywords
- Peirce quincuncial projection,
- elliptic functions,
- geographic maps,
- numerical conformal mapping,
- tessellations
How to Cite
Copyright (c) 2016 Leonardo Solanilla, Arnold Oostra, Juan Pablo Yáñez
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
We present the essential theoretical basis and prove concrete practical formulas to compute the image of a point on the terrestrial sphere under Peirce quincuncial projection. We also develop a numerical method to implement such formulas in a digital computer and illustrate this method with examples. Then, we briefly discuss the criticism of Pierponton the correctness of Peirce’s formula for the projection. Finally, we draw some conclusions regarding the generalization of Peirce’s original idea by means of Schwarz-Christoffel transformations.
To cite this article: L. Solanilla, A. Oostra, J.P. Yáñez, Peirce quincuncial projection, Rev. Integr. Temas Mat. 34 (2016), No. 1, 23–38.
Downloads
References
- “Adams hemisphere-in-a-square projection”, https://en.wikipedia.org/wiki/Adams_hemisphere-in-a-square_projection, [accessed 14 June 2015].
- Bellacchi G., Introduzione storica alla teoria delle funzioni ellittiche, G. Barbèra, Firenze,1894.
- Bergonio P.P., “Schwarz-Christoffel Transformations”, Thesis (Master), The University of Georgia, Athens, 2007, 66 p.
- Durège H., Theorie der elliptischen Funktionen, Leipzig, Druck und Verlag von B.G. Teubner,1861.
- Frischauf I., “Bemerkungen zu C.S. Peirce Quincuncial Projection”, Amer. J. Math. 19(1897), No. 4, 381–382.
- “Guyou hemisphere-in-a-square projection”, https://en.wikipedia.org/wiki/Guyou_hemisphere-in-a square_projection, [accessed 14 June 2015].
- Jacobi C.G.J., Fundamenta nova theoriae functionum ellipticarum, Regiomonti (Königsberg), Borntræger, 1829.
- Lee L.P., “Some Conformal Projections Based on Elliptic Functions”, Geographical Review 55 (1965), No. 4, 563–580.
- Liouville M.J., “Leçons sur les fonctions doublement périodiques faites en 1847 par M.J. Liouville”, J. Reine Angew. Math. 88 (1880), 277–310.
- Peirce C.S., “A Quincuncial Projection of the Sphere”, Amer. J. Math. 2 (1879), No. 4, 394–396.
- Pierpont J., “Note on C.S. Peirce’s Paper on ‘A Quincuncial Projection of the Sphere’ ”, Amer. J. Math. 18 (1896), No. 2, 145–152.
- Richelot F.J., “Darstellung einer beliebigen gegebenen Größe durch sin am(u + w, k)”, J. Reine Angew. Math. 45 (1853), 225–232.
- Solanilla L., Las transformaciones elípticas de Jacobi, Sello Editorial Universidad del Tolima, Ibagué, 2014.
- Solanilla L., Tamayo A.C. & Pareja G., Integrales elípticas con notas históricas, Sello Editorial Universidad de Medellín, Medellín, 2010.