Revista Integración, temas de matemáticas.
Vol. 34 No. 1 (2016): Revista Integración
Research and Innovation Articles

Weak convergence of a sequence of Bernoulli radial random graphs

Leon A. Valencia
Universidad de Antioquia
Edwin Zarrazola
Universidad de Antioquia
Yeison Ramírez
Universidad de Antioquia

Published 2016-05-06

Keywords

  • Weak convergence,
  • diffusive scale,
  • brownian web

How to Cite

Valencia, L. A., Zarrazola, E., & Ramírez, Y. (2016). Weak convergence of a sequence of Bernoulli radial random graphs. Revista Integración, Temas De matemáticas, 34(1), 95–108. https://doi.org/10.18273/revint.v34n1-2016006

Abstract

This article introduce a collection of coalescing random paths defined on a radial plane region. It will proved that, in a diffusive scale, this collection converges in distribution, via homeomorphism,to a restriction of Brownian Web.

To cite this article: L.A. Valencia, E. Zarrazola, Y. Ramírez, Convergencia débil de una sucesión de grafos aleatorios radiales de Bernoulli,Rev. Integr. Temas Mat. 34 (2016), No. 1, 95–108.

Downloads

Download data is not yet available.

References

  1. Arratia R., “Coalescing Brownian motions and the voter model on Z”, Unpublished partial manuscript (circa 1981).
  2. Baccelli F. and Bordenave C., “The radial spanning tree of a Poisson point process”, Ann. Appl. Probab. 17 (2007), No. 1, 305–359.
  3. Coletti C.F, Fontes L.R.G. and Dias E.S., “Scaling limit for a drainage network model”, J. Appl. Probab. 46 (2009), No. 4, 1184–1197.
  4. Coletti C. and Valencia L.A., “The Radial Brownian Web”, arxiv.org/abs/1310.6929v1 (2013).
  5. Coletti C. and Valle G., “Convergence to the Brownian Web for a generalization of the drainage network model”, Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), No. 3, 899–
  6. Estrin D., Govindan R. and Heidemann J., “Next Century Challenges: Scalable Coordination in Sensor Networks”, Proceedings of ACM Mobicom, Seatle, USA, 263–270, 1999.
  7. Ferrari P.A., Fontes L.R.G. and Wu X.Y., “Two-dimensional Poisson trees converge to the Brownian web”, Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), No. 5, 851–858.
  8. Fontes L.R.G., Isopi M., Newman C.M. and Ravishankar K., “The Brownian web: characterization and convergence”, Ann. Probab. 32 (2004), No. 4, 2857–2883.
  9. Fontes L.R.G., Valencia L.A. and Valle G., “Scaling limit of the radial Poissonian web”, Electron. J. Probab. 20 (2015), article 31, 1–40.
  10. Newman C.M., Ravishankar K. and Sun R., “Convergence of coalescing nonsimple random walks to the Brownian web”, Electron. J. Probab. 10 (2005), No. 2, 21–60.
  11. Tóth B. and Werner W., “The true self-repelling motion”, Probab. Theory Related Fields 111 (1998), No. 3, 375–452.
  12. Valencia L.A., “A Teia Browniana Radial”, Thesis (Ph.D), IME-USP, São Paulo, 2012, 83 p