Published 2016-12-12
Keywords
- Riemann surfaces,
- automorphisms
How to Cite
Copyright (c) 2016 Marby Bolaños Ortiz, Maribel Díaz, Martha Romero Rojas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
In his paper, The group of automorphisms of the Fermat curve (see [7]), Tzermias proved that the automorphism group of the projective Fermat curves in characteristic 0 is the semidirect product of the direct sum of 2 copies of the y cyclic group of order n and the symmetri group on 3 letters. In this paper we present an alternative proof of this fact accessible to someone with basic knowledge of Riemann surfaces and group theory. Also we include the geometric correspondence of the action.
To cite this article: M. Bolaños Ortiz, M. Díaz, M. Romero Rojas, The group of automorphisms of the Fermat curve, Rev. Integr. Temas Mat. 34 (2016), No. 2, 133-138.
Downloads
References
- Bauer I., Garion S. and Vdovina A., Beauville surfaces and groups, Springer Proc. Math. Stat. 123, Springer, Cham, 2015.
- Broughton S.A., "Classifying finite group actions on surfaces of low genus", J. Pure Appl. Algebra 69 (1991), No. 3, 233-270.
- Hurwitz A., "Ueber algebraische Gebilde mit eindeutigen Transformationen in sich", Math. Ann. 41 (1892), No. 3, 403-442.
- Leopoldt H.-W., "Über die Automorphismengruppe des Fermatkörpers", J. Number Theory 56 (1996), No. 2, 256-282.
- Macbeath A.M., "On a theorem of Hurwitz", Proc. Glasgow Math. Assoc. 5 (1961), 90-96.
- Miranda R., Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics 5, American Mathematical Society, Providence, RI, 1995.
- Tzermias P., "The group of automorphisms of the Fermat curve", J. Number Theory 53 (1995), No. 1, 173-178.
- Volklein H., Groups as Galois groups. An introduction, Cambridge Studies in Advanced Mathematics 53, Cambridge University Press, Cambridge, 1996.