Revista Integración, temas de matemáticas.
Vol. 35 No. 2 (2017): Revista Integración, temas de matemáticas
Research and Innovation Articles

When is R[x] a principal ideal ring?

Henry Chimal-Dzul
Ohio University
Bio
C. A. López-Andrade
Benemérita Universidad Autónoma de Puebla
Bio

Published 2018-03-06

Keywords

  • Principal ideal ring,
  • polynomial ring,
  • finite rings

How to Cite

Chimal-Dzul, H., & López-Andrade, C. A. (2018). When is R[x] a principal ideal ring?. Revista Integración, Temas De matemáticas, 35(2), 143–148. https://doi.org/10.18273/revint.v35n2-2017001

Abstract

Because of its interesting applications in coding theory, cryptography, and algebraic combinatoris, in recent decades a lot of attention has been paid to the algebraic structure of the ring of polynomials R[x], where R is a finite commutative ring with identity. Motivated by this popularity, in this paper we determine when R[x] is a principal ideal ring. In fact, we prove that R[x] is a principal ideal ring if and only if R is a finite direct product of finite fields

Downloads

Download data is not yet available.

References

[1] Dinh H.Q. and López-Permouth S.R., "Cyclic and negacyclic odes over fnite chain rings", IEEE Trans. Inform. Theory 50 (2004), No. 8, 1728-1744.

[2] Dougherty S.T., Yildiz B. and Karadeniz S., "Codes over Rk, Gray maps and their binary images", Finite Fields Appl. 17 (2011), No. 3, 205-219.

[3] Gómez-Calderón J. and Mullen G. L., "Galois rings and algebraic cryptography", Acta Arith. 59 (1991), No. 4, 317-328.

[4] Lidl R. and Niederreiter H., Finite Fields, Cambridge University Press, Cambridge, 1997.

[5] McDonald B., Finite rings with identity, Marcel Dekker, New York, 1974.

[6] Xiang-dong H.A. and Nechaev A.A., "A construction of fnite Frobenius Rings and its application to partial difference sets", J. Algebra 309 (2007), No. 1, 1-9.

[7] Zariski O. and Samuel P., Commutative Algebra I, Springer-Verlag, New York, 1975.