Research and Innovation Articles
Published 2018-03-06
Keywords
- Characters,
- Series-L,
- M¨obius inversion formula
How to Cite
Gamero, H., Blanco, J., & Vergara, G. (2018). Theorem of Dirichlet on Fq [t]. Revista Integración, Temas De matemáticas, 35(2), 163–188. https://doi.org/10.18273/revint.v35n2-2017003
Copyright (c) 2018 Revista Integración, temas de matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
In this paper we prove the existence of infinite unit irreducible prime polynomials on the finite field Fq by Pollack through of characters and L-series.
Downloads
Download data is not yet available.
References
[1] Albis V.S., Lecciones sobre la Aritmética de Polinomios, Policopiado, Universidad Nacional de Colombia, 2002.
[2] Apostol T.M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1998.
[3] Dirichlet P.G.L., "Beweis des Satzes dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschlaftichen Factor sind unendliche viele Primzahlen enthglt", Abhand. Ak. Wiss. Berlin, 1 (1837), 45-81, [Werke, 1: 315-342].
[4] Ireland K. and Rosen M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1990.
[5] Pollack P., An Elementary Proof of Dirichlet's Theorem in the Polynomial Setting, Preimpreso.
[6] Rosen M., Number Theory in Function Fields, Springer-Verlag, New York, 2002.
[7] Shapiro H.N.,"On primes in Arithmetic progression II", Ann. of Math. (2) 52 (1950), No. 1, 231-243.
[2] Apostol T.M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1998.
[3] Dirichlet P.G.L., "Beweis des Satzes dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschlaftichen Factor sind unendliche viele Primzahlen enthglt", Abhand. Ak. Wiss. Berlin, 1 (1837), 45-81, [Werke, 1: 315-342].
[4] Ireland K. and Rosen M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1990.
[5] Pollack P., An Elementary Proof of Dirichlet's Theorem in the Polynomial Setting, Preimpreso.
[6] Rosen M., Number Theory in Function Fields, Springer-Verlag, New York, 2002.
[7] Shapiro H.N.,"On primes in Arithmetic progression II", Ann. of Math. (2) 52 (1950), No. 1, 231-243.