Revista Integración, temas de matemáticas.
Vol. 36 No. 1 (2018): Revista Integración, temas de matemáticas
Research and Innovation Articles

A proof of Holsztyński theorem

Michael A. Rincón-Villamizar
Universidad Industrial de Santander, Escuela de Matemáticas, Bucaramanga, Colombia.

Published 2018-07-22

Keywords

  • C(K) Banach spaces,
  • Banach-Stone theorem

How to Cite

Rincón-Villamizar, M. A. (2018). A proof of Holsztyński theorem. Revista Integración, Temas De matemáticas, 36(1), 59–65. https://doi.org/10.18273/revint.v36n1-2018005

Abstract

For a compact Hausdorff space, we denote by C(K) the Banach space of continuous functions defined in K with values in R or C. A well known result in Banach spaces of continuous functions is the Holsztyński theorem which establishes that if C(K) is isometric to a subspace of C(S), then K is a continuous image of S. The aim of this paper is to give an alternative proof of this result for extremely regular subspaces of C(K).

Downloads

Download data is not yet available.

References

[1] Albiac F. and Kalton N.J., Topics in Banach space theory, Graduate Texts in Mathematics 233, Springer, New York, 2006.

[2] Araujo J., Font J.J. and Hernández S., “A note on Holsztynski’s theorem”, Papers on general topology and applications, in Ann. New York Acad. Sci. 788, New York (1996), 9–12.

[3] Arens R.F. and Kelley J.L., “Characterization of the space of continuous functions over a compact Hausdorff space”, Trans. Amer. Math. Soc. 62 (1947), 499–508.

[4] Banach S., Théorie des opérations linéaires, Monografie Matematyczne, Warsaw, 1933.

[5] Behrends E., M-Sctructure and Banach-Stone theorem, Lecture Notes in Math. 736, Springer-Verlag, 1979.

[6] Cengiz B., “Continuous maps induced by isomorphisms of extremely regular function spaces”, J. Pure Appl. Sci. 18 (1985), No. 3, 377–384.

[7] Folland G.B., Real analysis, Modern techniques and their applications, Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1999.

[8] Holsztyński W., “Continuous mappings induced by isometries of spaces of continuous functions”, Studia Math. 26 (1966), 133–136.

[9] Plebanek G., “On isomorphisms of Banach spaces of continuous functions”, Israel J. Math. 209 (2015), No. 1, 1–13.

[10] Semadeni Z., Banach spaces of Continuous Functions, Vol. 1, Monografie Mat. 55, PWN-Polish Sci. Publ. Warszawa, 1971.

[11] Stone M.H., “Applications of the theory of Boolean rings to general topology”, Trans. Amer. Math. Soc. 41 (1937), 375–481.