Research and Innovation Articles
Formulación geométrica de la dinámica clásica no relativista de una partícula
How to Cite
González V., G. A., & Paredes G., M. (1998). Formulación geométrica de la dinámica clásica no relativista de una partícula. Revista Integración, Temas De matemáticas, 16(2), 101–107. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/886
Abstract
The geometric formulation of non-relativistic classical dynamics of a partióle is shown by means of modern differential geometry concepts: ñbre bundles, symplectic manifolds and differential forms. Beginning with this formulation it is shown that standard Hamilton canonical equations are obtained by means of a coordínate expresión in an inertial reference fra-me.
Downloads
Download data is not yet available.
References
[1]R. Abraham and J.E. Marsden,Foundations of Mechanics, Adisson–Wesley,1978.
[2]V.I. Arnold,Mathematical Methods of Classical Mechanics, Graduate Texts inMathematics, 60, Springer–Verlag, 1980.
[3]W. Thirring,Classical Dynamical Systems, A Course in Mathematical Physics,1, Springer Verlag, 1978.
[4]J. Sniatycki,Geometric Quantization and Quantum Mechanics, Applied Mathematical Science, 30, Springer–Verlag, 1980.
[5]J. Simms and N.M.J. Woodhouse,Lectures and Geometric Quantization, Lecture Notes in Physics, 53, Springer–Verlag, 1976.[6]N. Steenrod,The Topology of Fibre Bundles, Princeton University Press, 1951.
[7]T. Eguchi, P. Gilkey and A.J. Hanson,Gravitation, Gauge Theories andDifferential Geometry, Phys. Rep., 66, p. 213, 1980.
[8]Y. Choquet–Bruhat, C. Dewitt–Morette and M. D ́ıllard–Bleick,Analysis, Manifolds and Physics, North–Holland, 1978.
[9]C. Chevalley,Theory of Lie Groups, Princeton University Press, 1946
[2]V.I. Arnold,Mathematical Methods of Classical Mechanics, Graduate Texts inMathematics, 60, Springer–Verlag, 1980.
[3]W. Thirring,Classical Dynamical Systems, A Course in Mathematical Physics,1, Springer Verlag, 1978.
[4]J. Sniatycki,Geometric Quantization and Quantum Mechanics, Applied Mathematical Science, 30, Springer–Verlag, 1980.
[5]J. Simms and N.M.J. Woodhouse,Lectures and Geometric Quantization, Lecture Notes in Physics, 53, Springer–Verlag, 1976.[6]N. Steenrod,The Topology of Fibre Bundles, Princeton University Press, 1951.
[7]T. Eguchi, P. Gilkey and A.J. Hanson,Gravitation, Gauge Theories andDifferential Geometry, Phys. Rep., 66, p. 213, 1980.
[8]Y. Choquet–Bruhat, C. Dewitt–Morette and M. D ́ıllard–Bleick,Analysis, Manifolds and Physics, North–Holland, 1978.
[9]C. Chevalley,Theory of Lie Groups, Princeton University Press, 1946