Revista Integración, temas de matemáticas.
Vol. 16 No. 2 (1998): Revista Integración, temas de matemáticas
Research and Innovation Articles

Formulación geométrica de la dinámica clásica no relativista de una partícula

Guillermo A. González V.
Universidad Industrial de Santander
Bio
Marlio Paredes G.
Universidad Industrial de Santander
Bio

How to Cite

González V., G. A., & Paredes G., M. (1998). Formulación geométrica de la dinámica clásica no relativista de una partícula. Revista Integración, Temas De matemáticas, 16(2), 101–107. Retrieved from https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/886

Abstract

 

The geometric formulation of non-relativistic classical dynamics of a par­tióle is shown by means of modern differential geometry concepts: ñbre bundles, symplectic manifolds and differential forms. Beginning with this formulation it is shown that standard Hamilton canonical equations are obtained by means of a coordínate expresión in an inertial reference fra-me.

Downloads

Download data is not yet available.

References

[1]R. Abraham and J.E. Marsden,Foundations of Mechanics, Adisson–Wesley,1978.

[2]V.I. Arnold,Mathematical Methods of Classical Mechanics, Graduate Texts inMathematics, 60, Springer–Verlag, 1980.

[3]W. Thirring,Classical Dynamical Systems, A Course in Mathematical Physics,1, Springer Verlag, 1978.

[4]J. Sniatycki,Geometric Quantization and Quantum Mechanics, Applied Mathematical Science, 30, Springer–Verlag, 1980.

[5]J. Simms and N.M.J. Woodhouse,Lectures and Geometric Quantization, Lecture Notes in Physics, 53, Springer–Verlag, 1976.[6]N. Steenrod,The Topology of Fibre Bundles, Princeton University Press, 1951.

[7]T. Eguchi, P. Gilkey and A.J. Hanson,Gravitation, Gauge Theories andDifferential Geometry, Phys. Rep., 66, p. 213, 1980.

[8]Y. Choquet–Bruhat, C. Dewitt–Morette and M. D ́ıllard–Bleick,Analysis, Manifolds and Physics, North–Holland, 1978.

[9]C. Chevalley,Theory of Lie Groups, Princeton University Press, 1946