Vol. 32 Núm. 2 (2019): Revista ION
Artículos

Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café

Laura Sofía Torres-Valenzuela
Universidad La Gran Colombia
Alejandra Sanín Villarrea
Universidad La Gran Colombia
Andrea Arango Ramírez
Universidad La Gran Colombia
Johanna Andrea Serna-Jiménez
Universidad La Gran Colombia

Publicado 2020-03-11

Palabras clave

  • biocomponentes,
  • café,
  • contaminación,
  • microorganismos,
  • aguas,
  • residuales
  • ...Más
    Menos

Cómo citar

Torres-Valenzuela, L. S., Sanín Villarrea, A., Arango Ramírez, A., & Serna-Jiménez, J. A. (2020). Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. Revista ION, 32(2), 59–66. https://doi.org/10.18273/revion.v32n2-2019006

Resumen

En el procesamiento del café, sólo se aprovecha el 5 % del producto fresco y se generan residuos como aguas mieles (AM), que pueden llegar hasta 40 L/Kg de café pergamino seco y al ser vertidas pueden provocar contaminación de alto impacto ambiental. Consecuentemente, el objetivo fue caracterizar fisicoquímica y microbiológicamente dos muestras de AM (M1, M2) con el fin de evaluar el potencial en la extracción de biocomponentes. Los parámetros medidos a las dos muestras de agua fueron Demanda Química de Oxígeno (DQO), nitrógeno, amonio, cromo, oxígeno disuelto (OD), pH, conductividad, acidez volátil, fósforo, cloruros, sólidos, color y, adicionalmente se cuantificaron mesófilos, coliformes totales y estafilococos. Se identificaron diferencias significativas entre las muestras y un efecto del procesamiento del café, sobre las características evaluadas. M2 mostró mayor concentración de OD, conductividad y cambio de color respecto al control, mientras que M1 tuvo mayor concentración para los demás parámetros evaluados. Cromo y amonio estuvieron por debajo del límite de detección de la prueba empleada, por el contrario, la DQO fue superior a lo reglamentado para aguas domésticas. En el análisis microbiológico, se encontraron mesófilos en ambas muestras, y M2 presentó coliformes y estafilococos. Con lo anterior se evidencia que el método de procesamiento de café afecta los parámetros de calidad de las aguas residuales y por ende se deben implementar metodologías de tratamiento y/o aprovechamiento acordes a las características intrínsecas de cada proceso.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Valenzuela A. El café y sus efectos en la salud cardiovascular y en la salud materna. Rev Chil Nutr. 2010;37(4):514-23.

[2] United States Department of Agriculture (USDA). Coffee: World Markets and Trade. United States: Foreign Agricultural Service; 2018.

[3] Federación Nacional de Cafeteros de Colombia (FEDECAFE). La Política Cafetera 2010-2014. Economía Cafetera. Colombia: Federación Nacional de Cafeteros de Colombia; 2014.

[4] Banco Mundial. Estudio del sector cafetero en Colombia. Colombia: Federación de Cafeteros; 2018.

[5] Rodríguez N, Sanz JR, Oliveros CE, Ramírez CA. Manejo y disposición de los subproductos y de las aguas residuales del beneficio del café. Manual del cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura. Cenicafé. Colombia: Legis; 2013.

[6] Bermúdez Savón RC, García Oduardo N, Mourlot López A. Fermentación sólida para la producción de pleurotus sp. Sobre mezclas de pulpa de café y viruta de cedro. Tecnología Química. 2007;27(2):55-62.

[7] Iriondo-DeHond A, Garcia NA, Fernandez Gomez B, Guisantes Batan E, Velazquez Escobar F, Blanch P, et al. Validation of coffee by-products as novel food ingredients. Innovative Food Sci. Emerging Technol. 2019;51:194-204.

[8] Bertrand B, Rapidel B. Desafíos de la caficultura en Centroamérica. Costa Rica: Agroamérica; 1999.

[9] Tharian JA, Padmapriya R, Thirunalasundari T. Coffee waste management-An overview. Int. J. Curr. Sci. 2013;9:83-91.

[10] Aguilera Y, Consuegra R, Rapado M. Treatment of coffee wastewater by gamma radiation. In: International Atomic Energy Agency (IAEA), editors. Symposium on radiation technology for conservation of the environment; 1997 Sep 8-12; Zakopane, Poland. Vienna: International Atomic Energy Agency (IAEA); 1998. p. 217-20.

[11] Pastrana L. Fundamentos de la fermentación en estado sólido y aplicación a la industria alimentaria. Cienc. Tecnol. Aliment. 1996;1(3):4-12.

[12] Janissen B, Huynh T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resour., Conserv. Recycl. 2018;128:110-7.

[13] Association of Official Analytical Chemists. Official methods of analysis (fifteenth edition ed.). United States: Association of Official Analytical Chemists; 1990.[14] Franson MAH. Métodos normalizados para el análisis de aguas potables y residuales. España: Ediciones Díaz de Santos; 1992.

[15] Dadi D, Mengistie E, Terefe G, Getahun T, Haddis A, Birke W, et al. Assessment of the effluent quality of wet coffee processing wastewater and its influence on downstream water quality. Ecohydrol Hydrobiol. 2018;18(2):201-11.

[16] Aguiar LL, Andrade-Vieira LF, de Oliveira David JA. Evaluation of the toxic potential of coffee wastewater on seeds, roots and meristematic cells of Lactuca sativa L. Ecotoxicol Environ Saf. 2016;133:366-72.

[17] Chagas PMB, Torres JA, Silva MC, Corrêa AD. Immobilized soybean hull peroxidase for the oxidation of phenolic compounds in coffee processing wastewater. Int J Biol Macromol. 2015;81:568-75.

[18] Novita E. Biodegradability Simulation of Coffee Wastewater Using Instant Coffee. Agric Agric Sci Procedia. 2016;9:217-29.

[19] Rattan S, Parande AK, Nagaraju VD, Ghiwari GK. A comprehensive review on utilization of wastewater from coffee processing. Environ Sci Pollut Res. 2015;22(9):6461-72.

[20] Córdoba NM, Guerrero JE. Caracterización de los procesos tradicionales de fermentación de café en el departamento de Nariño. Biotecnol. Sect. Agropecu. Agroind. 2016;14:75-83.

[21] Ministerio de Ambiente y Desarrollo Sostenible. Resolución 631 de 2015 – Parámetros vertimientos. Colombia; 2015.

[22] Orozco C, Barrientos H, Lopezlena A, Cruz J, Selvas C, Osorio E, et al. Evaluación de una planta piloto de aguas residuales del café. Higiene y Sanidad Ambiental. 2005;5:123-31.

[23] Fia R, D Matos AT, Lambert TF, Fia FRL, De Matos MP. Tratamento das águas do processamento dos frutos do cafeeiro em filtro anaeróbio seguid por sistema alagado construído: Ii - remoção de nutrientes e compostos fenólicos. Eng. Agric. 2010;30(6):1203-13.

[24] Alvarez J, Hugh S, Cuba N, Loza-Murguia M. Evaluación de un sistema de tratamiento de aguas residuales del prebeneficiado de café (Coffea arabica) implementado en la comunidad Carmen Pampa provincia Nor Yungas del Departamento de La Paz. Journal of the Selva Andina Research Society. 2011;2(1):34-42.

[25] Rodríguez S, Pérez RM, Fernández M. Estudio de la biodegradabilidad anaerobia de las aguas residuales del beneficio húmedo del café. Interciencia. 2000;25(8):386-90.

[26] Del Real Olvera J, Gutiérrez JI. Biodegradación anaerobia de las aguas generadas en el despulpado del café. Rev. Colomb. Biotecnol. 2010;12(2):230-39.

[27] Vásquez N, Rodríguez J, Torres P, Madera C. Desempeño del proceso de estabilización por contacto para el tratamiento del agua residual doméstica de Cali, Colombia. DYNA. 2011;78(168):98-107.

[28] Zambrano DA, Isaza JD, Rodríguez N, López U. Tratamiento de aguas residuales del lavado del café. Cenicafé. 1999;20:1-30.

[29] Crombet S, Abalos A, Rodríguez S, Pérez N. Evaluación del tratamiento anaerobio de las aguas residuales de una comunidad universitaria. Rev. Colomb. Biotecnol. 2016;18:49-56.

[30] Molina AE, Villatoro RA. Propuesta de tratamientos de aguas residuales en beneficios húmedos de café (trabajo de grado). San Salvador, El Salvador: Universidad de El Salvador; 2006.

[31] Lin K, Pei J, Li P, Ma J, Li Q, Yuan D. Simultaneous determination of total dissolved nitrogen and total dissolved phosphorus in natural waters with an on-line UV and thermal digestion. Talanta. 2018;185:419-26.

[32] Cárdenas GL, Sánchez IA. Nitrógeno en aguas residuales: orígenes, efectos y mecanismos de remoción para preservar el ambiente y la salud pública. Universidad y Salud. 2013;15:72-88.

[33] Universidad Nacional Autónoma de México. Tratamiento de aguas. Manual de laboratorio. México: Universidad Nacional Autónoma de México; 2013.

[34] Dadi D, Mengistie E, Terefe G, et al. Assessment of the effluent quality of wet coffee processing wastewater and its influence on downstream water quality. Ecohydrology & Hydrobiology. 2018;18(2):201-11.

[35] Organización Mundial de la Salud (OMS). Guías para la calidad del agua potable. Vol. 1. 3 ed. Suiza: Organización Mundial de la Salud (OMS); 2006.

[36] Garde WK, Buchberger SG, Wendell D, Kupferle MJ. Application of Moringa Oleifera seed extract to treat coffee fermentation wastewater. Journal of Hazardous Materials. 2017;329:102–9.

[37] Zayas Péerez T, Geissler G, Hernandez F. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. J Environ Sci. 2007;19:300–5.

[38] Botello Suárez WA, da Silva Vantini J, Duda RM, et al. Predominance of syntrophic bacteria, Methanosaeta and Methanoculleus in a two-stage up-flow anaerobic sludge blanket reactor treating coffee processing wastewater at high organic loading rate. Bioresour. Technol. 2018;268:158–68.

[39] Selvamurugan M, Doraisamy P, Maheswari M. An integrated treatment system for coffee processing wastewater using anaerobic and aerobic process. Ecological Engineering. 2010;36(12):1686-90.

[40] Rossmann M, De Matos AT, Abreu EC, E Silva FF, Borges AC. Performance of constructed wetlands in the treatment of aerated coffee processing wastewater: Removal of nutrients and phenolic compounds. Ecological Engineering. 2012;49:264–9.

[41] Rossmann M, De Matos AT, Abreu EC, E Silva FF, Borges AC. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands. J. Environ. Manage. 2013;128:912–9.