Vol. 36 Núm. 1 (2023): Revista ION
Artículos

Estudio bibliométrico de las aplicaciones de quitosano: Perspectivas de los procesos

Jeffrey León
Universidade Estadual de Campinas
Biografía

Publicado 2023-02-28

Palabras clave

  • Aplicación,
  • Grados de desacetilación,
  • Quitina,
  • Quitosano,
  • Segmento Industrial

Cómo citar

López Muñoz, F., García-Perez, A., Cárdenas, V. O., Meramo, S., Mainardi, D., Ricardez-Sandoval, L. ., González-Delgado, Ángel D. ., & León, J. (2023). Estudio bibliométrico de las aplicaciones de quitosano: Perspectivas de los procesos. Revista ION, 36(1), 59–78. https://doi.org/10.18273/revion.v36n1-2023005

Resumen

El quitosano es un compuesto de alto valor en el mercado mundial y se puede obtener, principalmente, en crustáceos, como son los camarones, cangrejos y langostas, pero otras fuentes son las paredes celulares de los hongos y las algas. Para 2027, el tamaño del mercado se estima en 28 930 millones de dólares según la inteligencia sobre mercados emergentes de instituciones académicas de todo el mundo (EMIS). El quitosano está formado por unidades de β-(1→ 4) D-glucosamina y N-acetil-D-glucosamina y normalmente es el resultado de la desacetilación de la quitina. Técnicamente, este compuesto es un biopolímero y representa del 30 al 40 % de la estructura del exoesqueleto del camarón. A través de metodologías cualitativas y cuantitativas, el quitosano se define según los grados de desacetilación y el peso molecular. Actualmente, de la producción mundial de quitosano, el 23 % se destina a la industria farmacéutica, seguida de la industria alimentaria con un 22 %, a su vez la industria cosmética con un 18 % y finalmente el tratamiento de aguas con un 17 %. En la industria farmacéutica se utilizaron los grados más altos de desacetilación, entre 70 a 90 %. Este trabajo expone el nivel de investigación utilizando 3 ecuaciones de búsqueda, utilizando Scopus® como base de datos principal y Vosviewer® para entender la relación entre palabras clave. Adicionalmente, se analizan los principales países que se publicaron, principales autores y áreas de interés, entre otros temas. A partir de esto se determinó que países asiáticos como China o Japón son los mayores investigadores. Esto es consecuencia de que al ser los países con mayor inversión las áreas de interés se centrarán en el entorno de la ingeniería química y la ingeniería química. Las industrias farmacéuticas, alimentaria y de ingeniería tisular son los medios de mayor información (75 % del total de las investigaciones).

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Ravi Kumar MNV. A review of chitin and chitosan applications. Reactive and Functional Polymers. 2000;46(1):1–27. doi.org/10.1016/S1381-5148(00)00038-9
  2. Bautista-Baños S, Hernández-Lauzardo AN, Velázquez-del Valle MG, HernándezLópez M, Ait Barka E, Bosquez-Molina E, et al. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection. 2006;25(2):108–118. doi.org/10.1016/j.
  3. cropro.2005.03.010
  4. Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science (Oxford). 2009;34(7):641–678. doi.org/10.1016/j.progpolymsci.2009.04.001
  5. Liu S, Li D, Wang Y, Zhou G, Ge K, Jiang L. Adhesive, antibacterial and double crosslinked carboxylated polyvinyl alcohol/chitosan hydrogel to enhance dynamic skin wound healing. Int J Biol Macromol. 2023;228:744–753. doi.org/10.1016/j.ijbiomac.2022.12.169
  6. Ahmadi F, Oveisi Z, Samani M, Amoozgar Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Research in Pharmaceutical Sciences. 2015;10(1):1–16.
  7. Curbelo Hernández C, Palacio Dubois Y, Fenafo Hernández S. Desacetilación de quitina obtenida por vía química de exoequeletos de camarón Litopenaus vannamei [Online]. Centro Azúcar. 2021[cited 2022 may 22];48(3):2021. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2223-48612021000300053
  8. Zhang J, Xu W-R, Zhang Y-C. Facile production of chitin from shrimp shells using a deep eutectic solvent and acetic acid. RSC Adv. 2022;12(35):22631–22638. doi.org/10.1039/d2ra03417d
  9. Ashraf PM, Anju VS, Binsi PK, Joseph TC. A green extraction process of nanocarbon dots from prawn shells, and its reinforcement in epoxy polymers. J Appl Polym Sci. 2022;140(1):53250. doi.org/10.1002/app.53250
  10. Hazmi AT, Ahmad FB, Maziati Akmal MH, Md Ralib AA, Binti Ali F. Fungal chitosan for potential application in piezoelectric energy harvesting: Review on experimental procedure of chitosan extraction. Alexandria Engineering Journal. 2022;67:105–116. doi.org/10.1016/j.aej.2022.08.020
  11. Li Z, Cai F, Tang J, Xu Y, Guo K, Xu Z, et al. Oxygen metabolism-balanced engineered hydrogel microspheres promote the regeneration of the nucleus pulposus by inhibiting acid-sensitive complexes. Bioact Mater. 2023;24:346–360. doi.org/10.1016/j.bioactmat.2022.12.025
  12. Köll P, Borchers G, Metzger JO. Thermal degradation of chitin and cellulose. J Anal Appl Pyrolysis. 1991;19:119–129. doi.org/10.1016/0165-2370(91)80038-A
  13. Velásquez CL. Quitina y quitosano: materiales del pasado para el presente y el futuro [Online]. Avances en Química. 2006[cited 2022 jun 08];1(2):15–21. Available from: www.saber.ula.ve/avancesenquimica
  14. Younes I, Ghorbel-Bellaaj O, Nasri R, Chaabouni M, Rinaudo M, Nasri M. Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process
  15. Biochemistry. 2012;47(12):2032–2039. doi.org/10.1016/j.procbio.2012.07.017
  16. Meng W, Sun H, Mu T, Garcia-Vaquero M. Chitosan-based Pickering emulsion: A comprehensive review on their stabilizers, bioavailability, applications and regulations. Carbohydrate Polymers. 2023;304:120491. doi.org/10.1016/j.carbpol.2022.120491
  17. Souza VGL, Pires JRA, Rodrigues C, Coelhoso IM, Fernando AL. Chitosan composites in packaging industry-current trends and future challenges. Polymers. 2020;12(2):417. doi.org/10.3390/polym12020417
  18. Pratik M , Eswara P. Chitosan Market. Allied Market Research [Internet]. Available from: https://www.alliedmarketresearch.com/chitosan-market Accessed: 23 May 2022.
  19. Transparency Market Research. Chistosan Market [Internet]. TMR Inc. Available from: https://www.transparencymarketresearch.com/chitosan-market.html Accessed: 03 Oct 2022.
  20. Chaudhary T. Chitosan Market Research Report Information By Source (Shrimps, Prawns, Crabs, Lobsters, Fungi, and Others), By Application (Food & Beverages, Pharmaceuticals & Nutraceuticals, Cosmetics & Personal care, Agriculture, and Others), and By Region (North America, Europe, Asia-Pacific, And Rest Of The World) – Market Forecast Till 2030. [Internet]. Market Research Future. Available from: https://www.marketresearchfuture.com/reports/chitosanmarket-2269 Accessed: 03 Oct 2022.
  21. Garg KC, Kumar S, Singh RK. Bibliometric Study of the Coverage and Overlap of Journals Indexed by Four Abstracting and Indexing Services in Library and Information Science. Serials Librarian. 2020;79(1–2):118–130. doi.org/10.1080/0361526X.2019.1704341
  22. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021;133:285–296. doi.org/10.1016/J.JBUSRES.2021.04.070
  23. Chen C. Science Mapping: A Systematic Review of the Literature. Journal of Data and Information Science. 2017;2(2):1–40. doi.org/10.1515/jdis-2017-0006
  24. Waltman L, van Eck NJ. A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology. 2012;63(12)2378–2392. doi.org/10.1002/asi.22748
  25. Martín-Martín A, Thelwall M, Orduna-Malea E, Delgado López-Cózar E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations COCI: a multidisciplinary comparison of coverage via citations. Scientometrics. 2021;126(1):871–906. doi.org/10.1007/s11192-020-03690-4
  26. Elsevier. Content Coverage Guide [Internet]. Scopus; 2020. pp. 1–24 [Cited 2021 July 22]. Available from: https://www.elsevier.com/__data/assets/pdf_file/0007/69451/Scopus_ContentCoverage_Guide_WEB.pdf
  27. Liu W. Accuracy of funding information in Scopus: a comparative case study. Scientometrics. 2020;124(1)803–811. doi.org/10.1007/s11192-020-03458-w
  28. Anker MS, Hadzibegovic S, Lena A,
  29. Haverkamp W. The difference in referencing in Web of Science, Scopus, and Google Scholar. ESC Heart Fail. 2019;6(6):1291–1312. doi.org/10.1002/ehf2.12583
  30. Leydesdorff L, de Moya-Anegón F, de Nooy W. Aggregated journal–journal citation relations in scopus and web of science matched and compared in terms of networks, maps, and interactive overlays. J Assoc Inf Sci Technol. 2016;67(9)2194–2211. doi.org/10.1002/asi.23372
  31. Elsevier. Content - How Scopus Works - Scopus- | Elsevier solutions [Internet]. Elsevier; 2021. [Cited 2021 July 22]. Available from: https://www.elsevier.com/solutions/scopus/howscopus-works/content
  32. Hernández-González V, Sans-Rosell N, JovéDeltell MC, Reverter-Masia J. Comparación entre web of science y scopus, estudio bibliométrico de las revistas de anatomía y morfología. International Journal of Morphology. 2016;34(4):1369–1377. doi.org/10.4067/S0717-95022016000400032
  33. Singh N, Arora S. Recognizing the legacy of the TQM Journal: a bibliometric analysis of Scopus indexed publications (2008 - 2021). TQM Journal. 2022;ahead-of-print. doi.org/10.1108/TQM-01-2022-0002
  34. TechValidate. SCOPUS CASE STUDY: Scopus is the A&I Database of Choice Among Users in the United Kingdom. Elsavier [Internet]. Available from: https://www.elsevier.com/__data/assets/pdf_file/0005/317129/Scopus_AI-Dbase-of-Choice_UK-Case-Study_June2017.pdf Accessed: 21 Jun 2022.
  35. Aziz SB, Abidin ZHZ. Electrical and
  36. morphological analysis of chitosan:AgTf solid electrolyte. Mater Chem Phys. 2014;144(3):280–286. doi.org/10.1016/j.matchemphys.2013.12.029
  37. Aziz SB, Dannoun EMA, Murad AR, Mahmoud KH, Brza MA, Nofal MM, et al. Influence of scan rate on CV Pattern: Electrical and electrochemical properties of plasticized Methylcellulose: Dextran (MC:Dex) proton conducting polymer electrolytes. Alexandria Engineering Journal. 2022;61(8):5919–5937. doi.org/10.1016/j.aej.2021.11.020
  38. Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Caballero AH, et al. (2021). Chitosan: An overview of its properties and applications. Polymers 2021;13(19):3256. doi.org/10.3390/polym13193256
  39. Meramo S, González-Delgado ÁD, Sukumara S, Fajardo WS, León-Pulido J. Sustainable Design Approach for Modeling Bioprocesses from Laboratory toward Commercialization: Optimizing Chitosan Production. Polymers. 2022;14(1):25. doi.org/10.3390/polym14010025
  40. Kedir WM, Abdi GF, Goro MM, Tolesa LD. Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review. Heliyon. 2022;8(8):e10196. doi.org/10.1016/j.heliyon.2022.e10196
  41. Asia Pacific Aquaculture Market Forecast to 2028 - COVID-19 Impact and Regional Analysis By Product Type (Aquatic Plants, Fish, Crustaceans, Mollusca, and Others) and Culture Environment (Fresh Water, Brackish Water, and Marine Water) [Internet]. Business Market Insights. Available from: https://www.businessmarketinsights.com/reports/asiapacific-aquaculture-market Accessed: 22 Jun
  42. Al Shaqsi NHK, Al Hoqani HAS, Hossain MA, Al Sibani MA. Optimization of the demineralization process for the extraction of chitin from Omani Portunidae segnis. Biochem Biophys Rep. 2020;23:100779. doi.org/10.1016/j.bbrep.2020.100779
  43. De Souza JR, Giudici R. Effect of diffusional limitations on the kinetics of deacetylation of chitin/chitosan. Carbohydr Polym. 2021;254:117278. doi.org/10.1016/j.carbpol.2020.117278.
  44. Pohling J, Dave D, Liu Y, Murphy W, Trenholm S. Two-step demineralization of shrimp (Pandalus Borealis) shells using citric acid: An environmentally friendly, safe and costeffective alternative to the traditional approach. Green Chemistry. 2022;24(3):1141–1151. doi.org/10.1039/d1gc03140f
  45. Riofrio A, Alcivar T, Baykara H. Environmental and Economic Viability of Chitosan Production in Guayas-Ecuador: A Robust Investment and Life Cycle Analysis. 2021;6(36):23038–51. doi.org/10.1021/acsomega.1c01672
  46. Liu X, He H. How do CSR disclosures facilitate knowledge-sharing behaviors? Marketing Intelligence and Planning. 2022;40(3):328–343. doi.org/10.1108/MIP-10-2021-0368
  47. Drury JL, Mooney DJ. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials. 2003;24(24):4337–4351. doi.org/10.1016/S0142-9612(03)00340-5
  48. Barros I, Guzmán L, Tarón A. Extracción y comparación de la quitina obtenida a partir del caparazon de Callinectes sapidus y Penaeus vannameis. Revista U.D.C.A Actualidad & Divulgación Científica. 2015;18(1):227–234. doi.org/10.31910/rudca.v18.n1.2015.471
  49. Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Heras Caballero A, et al. Chitosan: An overview of its properties and applications. Polymers. 2021;13(19):3256. doi.org/10.3390/polym13193256
  50. Azmana M, Mahmood S, Hilles AR, Rahman A, Bin Arifin MA, Ahmed S. A review on chitosan and chitosan-based ionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules. 2021;185:832–848. doi.org/10.1016/j.ijbiomac.2021.07.023
  51. Muñoz I, Rodríguez C, Gillet D, Moerschbacher BM. Life cycle assessment of chitosan
  52. production in India and Europe. International Journal of Life Cycle Assessment. 2018;23(5):1151–1160. doi.org/10.1007/s11367-017-1290-2
  53. Al Shaqsi NHK, Al Hoqani HAS, Hossain MA, Al Sibani MA. Isolation, characterization and standardization of demineralization process for chitin polymer and minerals from the crabs waste of Portunidae segnis. Adv Biomark Sci Technol. 2020;2:45–58. doi.org/10.1016/j.abst.2020.10.002
  54. Hoffman AS. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews. 2012;64:18–23. doi.org/10.1016/j.addr.2012.09.010
  55. Vallejo-Domínguez D, Rubio-Rosas E, Aguila-Almanza E, Hernández-Cocoletzi H, Ramos-Cassellis ME, Luna-Guevara ML, et al. Ultrasound in the deproteinization process for chitin and chitosan production. Ultrason Sonochem. 2021;72:105417. doi.org/10.1016/j.ultsonch.2020.105417
  56. Robledo E, González G. Hidrogeles de quitosano para la recuperación de compuestos orgánicos e inorgánicos en agua [Online]. Revista Internacional de Investigación e Innovación y Tecnológica. 2014[cited 2022 jul 17];9(31):1–9. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-97532018000100004
  57. Ruihua H, Bingchao Y, Zheng D, Wang B. Preparation and characterization of a quaternized chitosan. J Mater Sci. 2012;47(2):845–851. doi.org/10.1007/s10853-011-5862-4
  58. Francis Suh JK, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials. 2000;21(24):2589–2598. doi.org/10.1016/S0142-9612(00)00126-5
  59. Macea RB, De Hoyos CF, Montes YG, Fuentes EM, Ruiz JIR. Síntesis y propiedades de filmes basados en quitosano/lactosuero Síntesis y propiedades de filmes basados en quitosano/lactosuero. Polímeros. 2015;25(1):58–69. doi.org/10.1590/0104-1428.1558
  60. Velasco JF, Días GC, Ramírez RE, Pérez LE. Producción de quitosano a partir de desechos de camarón generados del procesamiento industrial. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos. 2019;4:897–901.