Vol. 37 No. 1 (2024): Revista ION
Articles

Adaptation of native microbial consortia, present in sewage sludge for polyhydroxyalkanoates (PHA’s) accumulation

Daina Yuliana Cortes Lasso
Universidad Colegio Mayor de Cundinamarca
Angie Valeria Contreras Roa
Universidad Colegio Mayor de Cundinamarca
Judith Elena Camacho Kurmen
Universidad Colegio Mayor de Cundinamarca
Carolina Guzmán Luna
Universidad Colegio Mayor de Cundinamarca

Published 2024-07-29

Keywords

  • Domestic sewage sludge,
  • PHA's,
  • Feeding strategies,
  • Native microbial consortia,
  • Volatile fatty acids

How to Cite

Cortes Lasso, D. Y. ., Contreras Roa, A. V., Camacho Kurmen, J. E., & Guzmán Luna, C. (2024). Adaptation of native microbial consortia, present in sewage sludge for polyhydroxyalkanoates (PHA’s) accumulation. Revista ION, 37(1), 99–115. https://doi.org/10.18273/revion.v37n1-2024007

Abstract

Polyhydroxyalkanoates (PHA’s) are biodegradable and biocompatible natural polyesters synthesized by a wide range of bacteria as a carbon reserve and their chemical composition varies according to the substrate used, the metabolic route used by the microorganism and the PHA-synthase enzyme. Considering the Sustainable Development Goals (SDG), the circular economy and the reuse of wastewater, the purpose of this research is to describe, through the review of scientific literature, aspects related to the adaptation and selection of native microbial consortia that achieve a high accumulation of PHAs from wastewater treatment plant sludge. The production of these polymers is conditioned to the formulation of the culture medium to favor the increase in biomass and subsequently its accumulation. For this, microbial feeding strategies have been described, starting with a nutrient-enriched medium, followed by a product formation phase in a limited medium, a process known as feast and famine, which is a strategy currently used. Mixed microbial consortia from wastewater treatment plants are promising to produce PHAs from volatile fatty acids using the feast and famine strategy.

Downloads

Download data is not yet available.

References

  1. Di Bartolo A, Infurna G, Dintcheva NT. A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers. 2021;13:1229. https://doi.org/10.3390/polym13081229
  2. Ministerio de Ambiente. Ruta hacia la eliminación de la contaminación por plásticos. Disponible en: https://www.minambiente.gov.co/con-nueva-plataforma-colombia-continua-la-ruta-hacia-la-eliminacion-de-la-contaminacion-por-plasticos/. Acceso el 22 de julio de 2024.
  3. Plastics Europe. The fast Facts 2023. (Internet). Disponible en: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/. Acceso el 22 de julio de 2024
  4. Rosenboom J, Langer, R, Traverso G. Bioplastics for a circular economy. Nat. Rev. Mat. 2022;7:117-137. https://doi.org/10.1038/s41578-021-00407-8
  5. Choi G, Kim H, Rhee Y. Enzymatic and non-enzymatic degradation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolyesters produced by Alcaligenes sp. MT-16. J. Microbiol. 2004;42(4):346-52.
  6. Kumar M, Rathour R, Singh R, Sun Y, Pandey, Gnansounou E, et al. Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. J. Clean. Prod. 2020;263:121500. https://doi.org/10.1016/j.jclepro.2020.121500
  7. Aslan AKHN, Ali MDM, Morad NA, Tamunaidu P. Polyhydroxyalkanoates production from waste biomass. IOP Conf. Ser.: Earth Environ. Sci. 2016;36:012040. https://doi.org/10.1088/1755-1315/36/1/012040
  8. Rodriguez-Perez S, Serrano A, Pantión A, Alonso-Fariñas B. Challenges of scaling-up PHA production from waste streams. A review. J. Environ. Manage. 2018;205:215-230. https://doi.org/10.1016/j.jenvman.2017.09.083
  9. Mulopo J. A systematic overview of current advancements for chemical, material, and energy production using sewage sludge for industrial ecology and sustainability transition. Environ. Sustain. 2024;7:5–29. https://doi.org/10.1007/s42398-023-00301-9
  10. Nair C, Meyer B. From Axenic to Mixed Cultures: Technological Advances Accelerating a Paradigm Shift in Microbiology. Trends in microbiol. 2018;6:538-554. https://doi.org/10.1016/j.tim.2017.11.004
  11. Tamang P, Arndt C, Bruns-Hellberg J, Nogueira R. Polyhydroxyalkanoates production from industrial wastewaters using a mixed culture enriched with Thauera sp: Inhibitory effect of the wastewater matrix. Environ Technol Innov. 2021;21:101328. https://doi.org/10.1016/j.eti.2020.101328
  12. Mendoza C, Rafael R. Obtención de polihidroxialcanoato a partir del suero lácteo por cultivos microbianos mixtos (Tesis de doctorado). Coruña, España: Universidad de la Coruña; 2017.
  13. Lemos A, Mina A. Polihidroxialcanoatos (PHA’s) producidos por bacterias y su posible aplicación a nivel industrial. Informador Técnico. Colombia. 2015;79(1):93-101. https://doi.org/10.23850/22565035.139
  14. Ren Yu, Inoue D, Ike M. Potential of activated sludge-derived mixed microbial culture enriched on acetate to produce polyhydroxyalkanoates from various substrates. J. Mater. Cycles Waste Manag. 2024;26:2355–2365. https://doi.org/10.1007/s10163-024-01974-y
  15. Gangurde S, Sayyed R, Kiran S, Gulati A. Development of eco-friendly bioplastic like PHB by distillery effluent microorganisms. Environ. Sci. Pollut. Res. Int. 2012;20(1):488-497. https://doi.org/10.1007/s11356-012-1021-y
  16. Szacherska K, Moraczewski K, Rytlewski P, Czaplicki S, Ciesielski S, Oleskowicz-Popiel P, et al. Polyhydroxyalkanoates production from short and medium chain carboxylic acids by Paracoccus homiensis. Nature. 2022;12:7263. https://doi.org/10.1038/s41598-022-11114-x
  17. Lam W, Wang Y, Ling P, Wan S, Fai Y, Chua H, et al. Production of polyhydroxyalkanoates (PHA) using sludge from different wastewater treatment processes and the potential for medical and pharmaceutical applications. Env. Tech. 2017;38(13–14):1779–1791. https://doi.org/10.1080/09593330.2017.1316316
  18. Sruamsiri D, Thayanukul P, Boonchayaanant B. In situ identification of polyhydroxyalkanoate (PHA)- accumulating microorganisms in mixed microbial cultures under feast/famine conditions. Sci. Rep. 2020;10:3752. https://doi.org/10.1038/s41598-020-60727-7
  19. Szacherska K. Volatile fatty acids as carbon sources for polyhydroxyalkanoates Production. Polymers. 2021;13(3):321. https://doi.org/10.3390/polym13030321
  20. Hao J, Wang X, Wang H. Overall process of using a valerate dominant sludge hydrolysate to produce high-quality polyhydroxyalkanoates (PHA) in a mixed culture. Sci. Rep. 2017;7:6939. https://doi.org/10.1038/s41598-017-07154-3
  21. Ben M. Producción de polihidroxialcanoatos a partir de agua residual de la industria de la cerveza (Tesis de Doctorado). Coruña, España: Universidad de la Coruña; 2015.
  22. Lorini L, Martinelli A, Pavan P, Majone M, Valentino F. Downstream processing and characterization of polyhydroxyalkanoates (PHAs) produced by mixed microbial culture (MMC) and organic urban waste as substrate. Biomass Convers. Biorefin. 2021;11:693–703. https://doi.org/10.1007/s13399-020-00788-w
  23. Pittmann T, Steinmetz H. Polyhydroxyalkanoate Production on Wastewater Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Wastewater Treatment Plants. Bioeng. 2017;4(2):54. https://doi.org/10.3390/bioengineering4020054
  24. Crisafi F, Valentino F, Micolucci F, Denaro R. From organic wastes and hydrocarbons pollutants to polyhydroxyalkanoates: Bioconversion by terrestrial and marine bacteria. Sustainability. 2022;(14):8241. https://doi.org/10.3390/su14148241
  25. Valentino F, Lorini L, Gottardo M, Pavan P, Majone M. Effect of the temperature in a mixed culture pilot scale aerobic process for food waste and sewage sludge conversion into polyhydroxyalkanoates. J. of Biotechnol. 2020;323:54-61. https://doi.org/10.1016/j.jbiotec.2020.07.022
  26. Morgan-Sagastume F, Valentino F, Hjort M, Cirne D, Karabegovic L, Gerardin F, et al. Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment. Water Sci Technol. 2014;69(1):177-184. https://doi.org/10.2166/wst.2013.643
  27. Giraldo-Montoya J, Castaño-Villa G, Rivera-Páez F. Bacteria from industrial waste: potential producers of polyhydroxyalkanoates (PHAs) in Manizales, Colombia. Environ. Monit. Assess. 2020;192:480. https://doi.org/10.1007/s10661-020-08461-5
  28. Jaramillo S. Evaluación de la producción de polihidroxialcanoatos (PHAs) por parte de Ralstonia eutropha H16 (Tesis de grado). Bogotá, Colombia: Universidad de los Andes; 2017.
  29. Ciesielski S, Pokoj T, Mozejko J, Klimiuk E. Molecular identification of polyhydroxyalkanoates-producing bacteria isolated from enriched microbial community. Polish Journal of Microbiology. 2013;62(1):45–50.
  30. Jayakrishnan U, Deka D, Das G. Waste as feedstock for polyhydroxyalkanoate production from activated sludge: Implications of aerobic dynamic feeding and acidogenic fermentation. J. Environ. Chem. Eng. 2021;9(4):105550. https://doi.org/10.1016/j.jece.2021.105550
  31. Pei R, Estévez-Alonso A, Ortiz-Seco L, Van Loosdrecht M, Kleerebezem R, Werker A. Exploring the Limits of Polyhydroxyalkanoate Production by Municipal Activated Sludge. Environ. Sci. Technol. 2022;56(16):11729−11738. https://doi.org/10.1021/acs.est.2c03043
  32. Munir S, Jamil N. Polyhydroxyalkanoate (PHA) production in open mixed cultures using waste activated sludge as biomass. Arch. Microbiol. 2020;202:1907–1913. https://doi.org/10.1007/s00203-020-01912-0
  33. Zhang Z, Lin Y, Wu S, Li X, Cheng J, Yang Ch. Effect of composition of volatile fatty acids on yield of polyhydroxyalkanoates and mechanisms of bioconversion from activated sludge. Bioresour. Tech. 2023;385:129445. https://doi.org/10.1016/j.biortech.2023.129445
  34. Valentino F, Karabegovic L, Majone M, Morgan-Sagastume F, Werker A. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels. Water Res. 2015;77:49-63. https://doi.org/10.1016/j.watres.2015.03.016
  35. Werker A, Bengtsson S, Korving L, Hjort M, Anterrieu S, Alexandersson T. Consistent production of high quality PHA using activated sludge harvested from full scale municipal wastewater treatment – PHARIO. Water Sci. Technol. 2018;78(11):2256-2269. https://doi.org/10.2166/wst.2018.502
  36. Barati F, Asgarani E, Gharavi S, Soudi M. Considerable increase in Poly(3-hydroxybutyrate) production via phb C gene overexpression in Ralstonia eutropha PTCC 1615. BioImpacts. 2021;11(1):53–7. https://doi.org/10.34172/bi.2021.07
  37. Estévez-Alonso A, Altamira-Algarra B, Arnau-Segarra C, Van Loosdrecht M, Kleerebezem R, Werker A. Process conditions affect properties and outcomes of polyhydroxyalkanoate accumulation in municipal activated sludge. Bioresour. Technol. 2022;364:128035. https://doi.org/10.1016/j.biortech.2022.128035
  38. Alzate M, Caravelli A, Zaritzky N. Producción de polihidroxialcanoatos por lodos activados a partir de suero de queso. En: Congreso Latinoamericano de Ingeniería y Ciencias Aplicadas; 2015 abr 15-17; San Rafael, Mendoza, Argentina; 2015.
  39. Zhang Z, Wang Y, Wang X, Zhang Y, Zhu T, Peng L et al. Towards scaling-up implementation of polyhydroxyalkanoate (PHA) production from activated sludge: Progress and challenges. J. Clean. Prod. 2024;447:141542. https://doi.org/10.1016/j.jclepro.2024.141542
  40. Mineo A, Isern-Cazorla L, Rizzo C, Palumbo A, Suárez-Ojeda ME, Mannina G. Polyhydroxyalkanoates production by an advanced food-on-demand strategy: The effect of operational conditions. Chemical. Eng. J. 2023;472:145007. https://doi.org/10.1016/j.cej.2023.145007
  41. Cabrera F, Torres-Aravena Á, Pinto-Ibieta F, Campos J, Jeison D. On-line control of feast/famine cycles to improve PHB accumulation during cultivation of mixed microbial cultures in Sequential Batch Reactors. Int J Environ Res Public Health. 2021;18(23):12611. https://doi.org/10.3390/ijerph182312611