Publicado 2015-07-17
Palabras clave
- Biocombustibles,
- Jatropha Curcas L,
- Simulación,
- Propiedades Fisicoquímicas.Abstract
Cómo citar
Resumen
En los últimos años los biocombustibles han sido estudiados como una alternativa frente al uso de combustibles fósiles. Dentro de las recientes fuentes de producción de biodiésel se destaca la Jatropha curcas L. (J. curcas) cuyo aceite no es comestible, tiene buenos rendimientos, presentando con esto mayores ventajas que las materias primas tradicionales. En el presente trabajo se desarrolló un diseño conceptual y simulación del proceso de producción de biodiésel a partir del aceite de J. curcas, mediante la simulación de sus etapas en el software HYSYS®. Para este estudio, se trabajó con 11000kg/h de aceite como materia prima, se tuvo en cuenta una etapa de esterificación debido a los altos contenidos de ácidos grasos libres (FFA) presentes en este aceite y se emplearon diversos modelos termodinámicos, lo cual permitió obtener un biocombustible con una composición mayor al 98% (masa) en metilésteres. En cuanto a las propiedades fisicoquímicas del aceite y biodiésel obtenido por la simulación y correlaciones para la estimación de propiedades, se apreció concordancia con los datos experimentales reportados por diferentes autores, así como por normas ASTM D6751 y el Estándar Europeo EN-12214 que regulan sus características. Estos resultados permitieron identificar a la J. curcas como una alternativa viable para la producción de biocombustibles, y su posible implementación a escala industrial en el departamento de Bolívar, al no poner en riesgo la seguridad alimenticia y propiciar la producción de biocombustibles en Colombia a partir de fuentes vegetales no comestibles.
Descargas
Referencias
[2] Singh AP, Sarma AK. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews. 2011;15(9):4378-99.
[3] Singh SP, Singh D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews. 2010;14(1):200-16.
[4] Demirbas A, Demirbas MF. Importance of algae oil as a source of biodiesel. Energy Conversion and Management. 2011;52(1):163-70.
[5] Basili M, Fontini F. Biofuel from Jatropha curcas: Enviromental sustainability and option value. Ecological Economics. 2012;78:1–8.
[6] Foidl N, Foidl G, Sanchez M, Mittelbach M, Hackel S. Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresource Technology. 1996;58(1):77-82.
[7] Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology. 2008;99(6):1716-21.
[8] Koh MY, Ghazi TIM. A review of biodiesel production from Jatropha curcas L. oil. Renewable and Sustainable Energy Reviews. 2011;15(5):2240-51.
[9] Wang L, Yu H, He X, Liu R. Influence of fatty acid composition of woody biodiesel plants on the fuel properties. Journal of Fuel Chemistry and Technology. 2012;40(4):397-404.
[10] Anand K, Sharma RP, y Mehta PS. A comprehensive approach for estimating thermo-physical properties of biodiesel fuels. Applied Thermal Engineering. 2011;31(2–3):235-42.
[11] Lima EG, Silva GP, Silva GF. Evaluation of Group-Contribution Methods to Estimate Vegetable Oils and Biodiesel Properties. International Journal of Engineering and Technology. 2012;2(9):1600-5.
[12] Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob AR. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel. 2012;91(1):102-11.
[13] Sales-Cruz M, Aca-Aca G, Sánchez-Daza O, López-Arenas T. Predicting Critical Properties, Density and Viscosity of Fatty Acids, Triacylglycerols and Methyl Esters by Group Contribution Methods. ESCAPE20. 2010.
[14] Zhang Y, Dubé MA, McLean DD, Kates M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology. 2003;89(1):1-16.
[15] Zapata CD, Martínez ID, Arenas E, Henao CA. Producción de biodiesel a partir de aceite crudo de palma: 1. diseño y simulación de dos procesos continuos. Dyna rev.fac.nac.minas. 2007;74(151):71-82.
[16] Santana GCS, Martins PF, de Lima N, Batistella CB, Maciel R, Wolf MR.Simulation and cost estimate for biodiesel production using castor oil. Chemical Engineering Research and Design. 2010;88(5–6):626-32.
[17] Castillo AM, Velásquez JA, Cuartas PA. Obtención de biodiesel a partir de aceite de Jatropha curcas L por transesterificación etanólica. Revista Investigaciones Aplicadas. 2011;5(1):34-41.
[18] Aca-Aca MG, Campos E, Sánches O. Estimación de propiedades termodinámicas de los compuestos involucrados en la producción de biodiesel. Superficies y Vacío. 2009;22(3):15-9.
[19] Constantinou L, Gani R. New group contribution method for estimating properties of pure compounds. AICHE Journal. 1994;40(10):1697-709.
[20] Ofori-Boateng C, Teong LK, Jitkang L. Feasibility study of microalgal and Jatrophabiodiesel production plants: Exergy analysis approach. Applied Thermal Engineering. 2012;36:141-51.
[21] Demirbas A. Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel. 2008;87(8–9):1743-8.
[22] Gaona JA. Identificación de áreas aptas para el cultivo del Piñón (Jatropha curcas L.) en Colombia, como alternativa de obtención de biocombustible (tesis de pregrado). Bogotá D.C., Colombia: Pontificia Universidad Javeriana de Bogotá D.C. 2009.
[23] Cifras Informativas del Sector Biocombustibles (sitio en internet). Federación Nacional de Biocombustibles de Colombia (Fedebiocombustibles). Disponible en: http://www.fedebiocombustibles.com. Acceso el 7 Febrero 2013.
[24] Okullo A, Temu AK, Ogwok P, Ntalikwa JW. Physico-Chemical Properties of Biodiesel from Jatropha and Castor Oils. International journal of renewable energy research. 2012;2(1):47-52.
[25] Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology. 2010;101(19):7201-10.
[26] Demirbas, A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science. 2005;31 (5-6):466-87.
[27] Twu CH, Sim WD, Tassone V. Getting a handle on advanced cubic equations of state. Chemical Engineering Progress Magazine. 2002:58-65.
[28] Sánchez E. Desarrollo de un proceso para el aprovechamiento de integral de microalgas para la obtención de biocombustibles (tesis doctoral). Bucaramanga, Colombia: Universidad Industrial de Santander; 2012.
[29] Myint LL, El-Halwagi MM. Process analysis and optimization of biodiesel production from soybean oil. Clean Technologies and Environmental Policy. 2009;11(3):263-76.
[30] Ong HC, Mahlia TMI, Masjuki HH, Norhasyima RS. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review. Renewable and Sustainable Energy Reviews. 2011;15(8):3501-15.
[31] Minianuario Estadístico 2013. Principales cifras de la agroindustria de la palma de aceite en Colombia (sitio en Internet). Federación Nacional de Cultivadores de Palma de Aceite (Fedepalma). Disponible en: http://www.fedepalma.org. Acceso el 22 Febrero 2014.
[32] Sánchez E, Ojeda K, El-Halwagi M, Kafarov V. Biodiesel from microalgae oil production in two sequential esterification/transesterification reactors: Pinch analysis of heat integration. Chemical Engineering Journal. 2011;176–177(1):211-6.