Desenho e simulação de uma planta para a produção de biodiesel a partir de pinhão-manso (Jatropha curcas L.) no departamento de Bolivar
Publicado 2015-07-17
Palavras-chave
- Biocombustíveis,
- Jatropha Curcas L,
- Simulação,
- Propriedades Físico-Química.
Como Citar
Resumo
Nos últimos anos, os biocombustíveis têm sido estudados como alternativa aos combustíveis fósseis. Das fontes de produção de biodiesel, a Jatropha curcas L(J. curcas)destaca-se entre estas, cujo óleo não é comestível, além tem bons rendimentos, mostrando com isso vantagens sobre as materias primas tradicionais. O presente trabalho desenvolveu um desenho conceitual e simulação do processo de produção de biodiesel a partir de óleo de J. curcas, simulando as etapas do processo no softwareHYSYS®. Para o estudo foi considerado 11000kg/h de óleo e uma etapa de estirifição devido ao elevado teor de ácido graxo livre (FFA) presentes no óleo. Também, foram empregados variadados modelos termodinâmicos o que permitiu a obtençâo de um biocombustivel com uma composiçâo superior a 98% (em massa) em metil ésteres. Em quanto às propiedades físico-químicas do óleo e biodiesel obtidos pela simulação e as correlações para estimar as propriedades, estas concordaram com os dados experimentais relatados por diferentes autores bem como as normas ASTM D6751 e os Estándares Europeos EN-12214 que regem as características. Estes resultados permitiram a identificaçâo da J. curcas como uma alternativa viável de produçâo de biocmbustíveis e uma possível implemetaçâo em escala industrial no departamento de Bolívar, sem comprometer a segurança alimentar e promover a produçâo de biocombutsíveis na Colômbia de fontes vegetais nâo comestíveis.
Downloads
Referências
[2] Singh AP, Sarma AK. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews. 2011;15(9):4378-99.
[3] Singh SP, Singh D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews. 2010;14(1):200-16.
[4] Demirbas A, Demirbas MF. Importance of algae oil as a source of biodiesel. Energy Conversion and Management. 2011;52(1):163-70.
[5] Basili M, Fontini F. Biofuel from Jatropha curcas: Enviromental sustainability and option value. Ecological Economics. 2012;78:1–8.
[6] Foidl N, Foidl G, Sanchez M, Mittelbach M, Hackel S. Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresource Technology. 1996;58(1):77-82.
[7] Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology. 2008;99(6):1716-21.
[8] Koh MY, Ghazi TIM. A review of biodiesel production from Jatropha curcas L. oil. Renewable and Sustainable Energy Reviews. 2011;15(5):2240-51.
[9] Wang L, Yu H, He X, Liu R. Influence of fatty acid composition of woody biodiesel plants on the fuel properties. Journal of Fuel Chemistry and Technology. 2012;40(4):397-404.
[10] Anand K, Sharma RP, y Mehta PS. A comprehensive approach for estimating thermo-physical properties of biodiesel fuels. Applied Thermal Engineering. 2011;31(2–3):235-42.
[11] Lima EG, Silva GP, Silva GF. Evaluation of Group-Contribution Methods to Estimate Vegetable Oils and Biodiesel Properties. International Journal of Engineering and Technology. 2012;2(9):1600-5.
[12] Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob AR. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel. 2012;91(1):102-11.
[13] Sales-Cruz M, Aca-Aca G, Sánchez-Daza O, López-Arenas T. Predicting Critical Properties, Density and Viscosity of Fatty Acids, Triacylglycerols and Methyl Esters by Group Contribution Methods. ESCAPE20. 2010.
[14] Zhang Y, Dubé MA, McLean DD, Kates M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology. 2003;89(1):1-16.
[15] Zapata CD, Martínez ID, Arenas E, Henao CA. Producción de biodiesel a partir de aceite crudo de palma: 1. diseño y simulación de dos procesos continuos. Dyna rev.fac.nac.minas. 2007;74(151):71-82.
[16] Santana GCS, Martins PF, de Lima N, Batistella CB, Maciel R, Wolf MR.Simulation and cost estimate for biodiesel production using castor oil. Chemical Engineering Research and Design. 2010;88(5–6):626-32.
[17] Castillo AM, Velásquez JA, Cuartas PA. Obtención de biodiesel a partir de aceite de Jatropha curcas L por transesterificación etanólica. Revista Investigaciones Aplicadas. 2011;5(1):34-41.
[18] Aca-Aca MG, Campos E, Sánches O. Estimación de propiedades termodinámicas de los compuestos involucrados en la producción de biodiesel. Superficies y Vacío. 2009;22(3):15-9.
[19] Constantinou L, Gani R. New group contribution method for estimating properties of pure compounds. AICHE Journal. 1994;40(10):1697-709.
[20] Ofori-Boateng C, Teong LK, Jitkang L. Feasibility study of microalgal and Jatrophabiodiesel production plants: Exergy analysis approach. Applied Thermal Engineering. 2012;36:141-51.
[21] Demirbas A. Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel. 2008;87(8–9):1743-8.
[22] Gaona JA. Identificación de áreas aptas para el cultivo del Piñón (Jatropha curcas L.) en Colombia, como alternativa de obtención de biocombustible (tesis de pregrado). Bogotá D.C., Colombia: Pontificia Universidad Javeriana de Bogotá D.C. 2009.
[23] Cifras Informativas del Sector Biocombustibles (sitio en internet). Federación Nacional de Biocombustibles de Colombia (Fedebiocombustibles). Disponible en: http://www.fedebiocombustibles.com. Acceso el 7 Febrero 2013.
[24] Okullo A, Temu AK, Ogwok P, Ntalikwa JW. Physico-Chemical Properties of Biodiesel from Jatropha and Castor Oils. International journal of renewable energy research. 2012;2(1):47-52.
[25] Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology. 2010;101(19):7201-10.
[26] Demirbas, A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science. 2005;31 (5-6):466-87.
[27] Twu CH, Sim WD, Tassone V. Getting a handle on advanced cubic equations of state. Chemical Engineering Progress Magazine. 2002:58-65.
[28] Sánchez E. Desarrollo de un proceso para el aprovechamiento de integral de microalgas para la obtención de biocombustibles (tesis doctoral). Bucaramanga, Colombia: Universidad Industrial de Santander; 2012.
[29] Myint LL, El-Halwagi MM. Process analysis and optimization of biodiesel production from soybean oil. Clean Technologies and Environmental Policy. 2009;11(3):263-76.
[30] Ong HC, Mahlia TMI, Masjuki HH, Norhasyima RS. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review. Renewable and Sustainable Energy Reviews. 2011;15(8):3501-15.
[31] Minianuario Estadístico 2013. Principales cifras de la agroindustria de la palma de aceite en Colombia (sitio en Internet). Federación Nacional de Cultivadores de Palma de Aceite (Fedepalma). Disponible en: http://www.fedepalma.org. Acceso el 22 Febrero 2014.
[32] Sánchez E, Ojeda K, El-Halwagi M, Kafarov V. Biodiesel from microalgae oil production in two sequential esterification/transesterification reactors: Pinch analysis of heat integration. Chemical Engineering Journal. 2011;176–177(1):211-6.