Vol. 20 Núm. 1 (2021): Revista UIS Ingenierías
Artículos

Control por histéresis para un inversor buck-dual conectado a la red

Mario Andrés Bolaños-Navarrete
Univiersidad Nacional de Colombia
Juan David Bastidas-Rodríguez
Univiersidad Nacional de Colombia
Gustavo Adolfo Osorio
Univiersidad Nacional de Colombia

Publicado 2020-10-28

Palabras clave

  • buck-dual,
  • microinversor,
  • potencia activa,
  • control por histéresis

Cómo citar

Bolaños-Navarrete, M. A., Bastidas-Rodríguez, J. D., & Osorio, G. A. (2020). Control por histéresis para un inversor buck-dual conectado a la red. Revista UIS Ingenierías, 20(1), 1–10. https://doi.org/10.18273/revuin.v20n1-2021001

Resumen

Los inversores monofásicos son ampliamente usados en diferentes aplicaciones de energías renovables. Aunque típicamente se usa el inversor de puente completo, el inversor buck-dual provee una ventaja  importante porque elimina el problema de posibles cortos-circuitos. Sin embargo, las soluciones reportadas en la literatura requieren inductores adicionales, usan controladores lineales diseñados para un punto de operación, o no se pueden usar en aplicaciones de conexión a la red. En este artículo se presenta un control por histéresis para un inversor monofásico buck-dual de puente completo con conexión a la red para inyección de corriente activa. En particular, se presenta el modelo matemático en variables de estado y se obtienen condiciones analíticas para garantizar la evolución de la dinámica de error dentro de un conjunto con límites establecido por el diseñador. Además, se discuten los elementos para diseñar la banda muerta requerida en la transición entre los semi-ciclos positivos y negativos de la tensión de la red. Finalmente, los resultados de simulación validan las principales características del controlador propuesto, así como el diseño de la banda muerta.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] F. H. Gandoman, A. Ahmadi, A. M. Sharaf, P. Siano, J. Pou, B. Hredzak, V. G. Agelidis, “Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems,” Renewable and Sustainable Energy Reviews, vol. 82, no. 1, pp. 502-514, 2018, doi: 10.1016/j.rser.2017.09.062

[2] A. M. Bouzid, J. M. Guerrero, A. Cheriti, M. Bouhamida, P. Sicard, M. Benghanem, “A survey on control of electric power distributed generation systems for microgrid applications,” Renewable and Sustainable Energy Reviews, vol. 44, pp. 751-766, 2015.

[3] Y. Li and F. Nejabatkhah, “Overview of control, integration and energy management of microgrids,” Journal of Modern Power Systems and Clean Energy, vol. 2, no. 3, pp. 212-222, 2014.

[4] V. K. Sood, H. Abdelgawad, “Power converter solutions and controls for green energy,” Distributed Energy Resources in Microgrids, vol. 2019, no. 14, pp. 357-387, 2019.

[5] Çelik, A. Teke, A. Tan, “Overview of micro-inverters as a challenging technology in photovoltaic applications,” Renewable and Sustainable Energy Reviews, vol. 82, no. 3, pp. 3191-3206, 2018, doi: 10.1016/j.rser.2017.10.024

[6] R. Joan, L. Alvaro, B. Frede, R. Pedro, J. Rocabert, A. Luna, F. Blaabjerg, P. Rodríguez, “Control of power converters in AC microgrids,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734-4749, 2012.

[7] F. Obeidat, “A comprehensive review of future photovoltaic systems,” Solar Energy, vol. 163, no. July, pp. 545-551, 2018, doi: 10.1016/j.solener.2018.01.050

[8] A. Anzalchi, A. Sarwat, “Overview of technical specifications for grid-connected photovoltaic systems,” Energy Conversion and Management, vol. 152, no. September, pp. 312-327, 2017, doi: 10.1016/j.enconman.2017.09.049

[9] R. Dogga, M. K. Pathak, “Recent trends in solar PV inverter topologies,” Solar Energy, vol. 183, no. May, pp. 57-73, 2019, doi: 10.1016/j.solener.2019.02.065.

[10] S. Chatterjee, P. Kumar, S. Chatterjee, “A technocommercial review on grid connected photovoltaic system,” Renewable and Sustainable Energy Reviews, vol. 81, no. Mar, pp. 2371-2397, 2018.

[11] H. A. Sher, K. E. Addoweesh, “Micro-inverters – Promising solutions in solar photovoltaics,” Energy for Sustainable Development, vol. 16, no. 4, pp. 389-400, 2012, doi: 10.1016/j.esd.2012.10.002

[12] S. Requirements, S. Ravyts, M. D. Vecchia, G. Van Den Broeck, J. Driesen, “Review on building-integrated photovoltaics electrical system requirements and module-integrated converter recommendations,” Energies, vol. 12, no. 8, 2019, doi: 10.3390/en12081532

[13] M.A. Bolaños-Navarrete, J.D. Bastidas-Rodríguez, G. Osorio, “A review on solar PV based grid connected microinverter control schemes andt opologies,” International Journal of Renewable Energy Development, vol. 7, no. 2, pp. 171-182, 2018.

[14] Z. Yao, L. Xiao, Y. Yan, “Dual-buck full-bridge inverter with hysteresis current control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3153-3160, 2009, doi: 10.1109/TIE.2009.2022072

[15] A. Khan, F. Blaabjerg, “Modified transformerless dual buck inverter with improved lifetime for PV applications,” in 2018 IEEE International Reliability Physics Symposium Proceedings, 2018, pp. 621-626, doi: 10.1109/IRPS.2018.8353628

[16] L. Zhou, F. Gao, “Dual buck inverter with series connected diodes and single inductor,” in 2016 Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2016, pp. 2259-2263, doi: 10.1109/APEC.2016.7468180

[17] F. Akbar, H. Cha, H. F. Ahmed, A. A. Khan, “A Family of Single-Stage High-Gain Dual-Buck Split-Source Inverters,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp. 1701-1713, 2020, doi: 10.1109/JESTPE.2019.2894384

[18] A. A. Khan, H. Cha, J. S. J. Lai, “Cascaded Dual-Buck Inverter with Reduced Number of Inductors,” IEEE Transactions on Power Electronics, vol. 33, no. 4, pp. 2847–2856, 2018, doi: 10.1109/TPEL.2017.2701400

[19] A. J. A Mirzaee, M Khosravi, “Design of a control system for dual buck inverters used in grid-connection applications,” in 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, 2015, pp. 227-232, doi: 10.1109/KBEI.2015.7436051

[20] B. Wang, L. Z. Yi, W. Bin, A. Working, “Control study of Dual-Buck grid-connected inverter based on least squares algorithm,” in 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, 2011, pp. 1-4.

[21] S. K. Gudey, R. Gupta, “Sliding mode control of dual-buck full-bridge inverter,”in India International Conference on Power Electronics, IICPE, 2012, pp. 1-6.

[22] L. Wang, Y. Li, Q. Yan, W. Dou, “Dual buck grid-connected inverter based on GaN devices,” in 2016 Asian Conference on Energy, Power and Transportation Electrification, Singapore, 2016, pp. 1-6.

[23] M. Bhardwaj, S. Chodhury, “Digitally Controlled Solar Micro Inverter Design using C2000 Piccolo Microcontroller,” Texas Instrument, TX, USA, TIDU405B, Oct, 2014.

[24] C. Wang, Y. Zhou, J. Liu, F. Hong, B. Ji, J. Wang, “Single Inductor Dual Buck Full-Bridge Inverter,” IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4869-4877, 2015, doi: 10.1109/TIE.2015.2399280

[25] M.-k. Yang, Y.-j. Kim, W.-y. Choi, “High-E_ciency Dual-Buck Inverter Using Coupled Inductor,” The Power Electronics Society, vol. 24, no. 6, pp. 396-405, 2019.

[26] C. N. M. Ho, V. S. P. Cheung, H. S. H. Chung, “Constant frequency hysteresis current control of grid-connected VSI without bandwidth control,” in 2009 IEEE Energy Conversion Congress and Exposition, 2009, pp. 2949-2956, doi: 10.1109/TPEL.2009.2031804

[27] D. González Montoya, P. A. Ortiz Valencia, C. A. Ramos-Paja, “Fixed-frequency implementation of sliding-mode controllers for photovoltaic systems,” International Journal of Energy and Environmental Engineering, vol. 10, no. 3, pp. 287-305, 2019.

[28] C. N. M. Ho, V. S. Cheung, H. S. H. Chung, “Constant frequency hysteresis current control of grid-connected VSI without bandwidth control,” IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2484-2495, 2009, doi: 10.1109/TPEL.2009.2031804

[29] S. Gautam, R. Gupta, “Unified time-domain formulation of switching frequency for hysteresis current controlled AC/DC and DC/AC grid connected converters,” IET Power Electronics, vol. 6, no. 4, pp. 683-692, 2013, doi: 10.1049/iet-pel.2012.0484

[30] X. Ruan, X. Wang Donghua Pan, D. Yang Weiwei Li, C. Bao, “Control Techniques for LCL-Type Grid-Connected Inverters” in CPSS Power Electronics Series, New York, NY, USA: Springer Books, 2018, pp. 139-163.

[31] I. Villanueva, N. Vázquez, J. Vaquero, C. Hernández, H. López, R. Osorio, “L vs. LCL Filter for Photovoltaic Grid- Connected Inverter: A Reliability Study,” International Journal of Photoenergy, 2020.

[32] M. A. Bolaños, G. Osorio, J. D. Bastidas-Rodriguez, E. Revelo-Fuelagan, “Computational Model of a Two-stage Microinverter With Flyback Active Clamp and Dual Buck,” in 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellín, Colombia, 2019, pp. 1-6.

[33] J. K. Singh, R. K. Behera, “Hysteresis Current Controllers for Grid Connected Inverter: Review and Experimental Implementation,” in Proceedings of 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems, (PEDES), Chennai, India, 2018, pp. 1-6, doi: 10.1109/PEDES.2018.8707755

[34] B. Sudhakar, G. V. E. S. Kumar, “A unipolar fixed hysteresis band based sliding mode control of Single Phase Grid Connected LCL Filtered Voltage Source Inverter,” in 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, 2016, pp. 1-5.

[35] J. A. Suul, K. Ljøkelsøy, T. Midtsund, T. Undeland, “Synchronous reference frame hysteresis current control for grid converter applications,” IEEE Transactions on Industry Applications, vol. 47, no. 5, pp. 2183, 2011.

[36] X. Dai, Q. Chao, “The research of photovoltaic gridconnected inverter based on adaptive current hysteresis band control scheme,” in 2009 International Conference on Sustainable Power Generation and Supply, Nanjing, 2009, pp. 1-8, doi: 10.1109/SUPERGEN.2009.5348181

[37] Y. M. Alsmadi, V. Utkin, M. Haj-Ahmed, L. Xu, A. Y. Abdelaziz, “Sliding-mode control of power converters: AC/DC converters & DC/AC inverters,” International Journal of Control, vol. 91, no. 11, pp. 2573-2587, 2018, doi: 10.1080/00207179.2017.1390263

[38] V. Utkin, “Design of feedback systems with uncertainties, based on equivalent control,” in 2019 27th Mediterranean Conference on Control and Automation (MED), Akko, Israel, 2019, pp. 100-105.

[39] V. Utkin, J. Guldner, and J. Shi, Sliding mode control in electromechanical systems. Second edition, Boca Ratón, FL, USA: CRC PRESS taylor & francis group, 2009.

[40] Z. Yao, L. Xiao, “Two-switch dual-buck grid-connected inverter with hysteresis current control,” IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3310-3318, 2012, doi: 10.1109/TPEL.2011.2179318

[41] M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “A new singlephase PLL structure based on second order generalized integrator,” in 2006 37th IEEE Power Electronics Specialists Conference, Jeju, 2006, pp. 1-6.

[42] A. Mu, “Electric rule no.21,” Journal of Chemical Information and Modeling, vol. 53, no. 9, pp. 1689-1699, 2019.