Vol. 19 Núm. 3 (2020): Revista UIS Ingenierías
Artículos

Obtención de un pigmento de hematita mediante la transformación térmica del óxido superficial de varillas de acero corrugado

María Angélica Colpas-Ruiz
Universidad del Atlántico
Camilo Gnecco-Molina
Universidad del Atlántico
José Pérez-Mendoza
Universidad del Atlántico
Oscar Higuera-Cobos
Universidad del Atlántico
Gabriel Jiménez-Rodríguez
Universidad del Atlántico

Publicado 2020-05-29

Palabras clave

  • ɑ-Fe2O3,
  • óxido de hierro,
  • caracterización de pigmentos,
  • calcinación,
  • fases cristalinas

Cómo citar

Colpas-Ruiz, M. A., Gnecco-Molina, C., Pérez-Mendoza, J., Higuera-Cobos, O., & Jiménez-Rodríguez, G. (2020). Obtención de un pigmento de hematita mediante la transformación térmica del óxido superficial de varillas de acero corrugado. Revista UIS Ingenierías, 19(3), 143–152. https://doi.org/10.18273/revuin.v19n3-2020014

Resumen

En esta investigación, se reporta la valorización de la cascarilla de óxido superficial de varillas de acero al carbono mediante su transformación térmica en un pigmento compuesto principalmente por hematita (ɑ-Fe2O3). Se utilizó la Fluorescencia de Rayos X (XRF) y la Difracción de Rayos X (XRD) para determinar el contenido elemental del residuo procesado e identificar los óxidos de hierro involucrados en la calcinación, respectivamente.  El residuo siderúrgico en polvo se compone mayoritariamente por Fe2O3 (87.92 %), SiO2 (6.13 %), CaO (1.88 %), Al2O3 (1.30 %) y MnO (0.77 %). El contenido total de hierro tiene principalmente el siguiente contenido en óxidos de hierro: magnetita, maghemita, wustita, lepidocrocita, hematita y goetita. El tratamiento térmico del residuo a temperaturas de 750-850 °C y tiempos de sostenimiento de 0.5-1.50 h, evidenció una alta conversión de los óxidos de hierro precursores en hematita, con porcentajes de esta fase que oscilan entre 86.4 y 94.6 %. La mayor obtención de hematita se logró a una condición de 850 °C y 1.00 h.

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] D. E. J. Talbot, J.D.R. Talbot, “Corrosion of Iron and Steels,” in Corrosion Science and Technology, 3rd ed. Boca Raton, US: CRC press, 2018, pp. 195-214.

[2] M. Morcillo, B. Chico, “Conceptos básicos sobre corrosión atmosférica,” in La corrosión atmosférica del acero al carbono en ambientes costeros. Madrid: Editorial Consejo Superior de Investigaciones Científicas (CSIC), 2018, ch. 2, pp. 32-59.

[3] D. de la Fuente, J. Alcántara, B. Chico, I. Díaz, J.A. Jiménez, M. Morcillo, “Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques,” Corros. Sci., vol. 110, pp. 253–264, 2016, doi: 10.1016/j.corsci.2016.04.034

[4] Y. Zhao, H. Ren, H. Dai, W. Jin., “Composition and expansion coefficient of rust based on X-ray diffraction and thermal analysis,” Corr. Sci., vol. 53, no. 5, pp. 1646–1658, 2011, doi: 10.1016/j.corsci.2011.01.007

[5] E. Zitrou, J. Nikolaou, P. E. Tsakiridis, G. D. Papadimitriou, “Atmospheric corrosion of steel reinforcing bars produced by various manufacturing processes,” Rev. Constr. Build. Mat., vol. 21, no. 6, pp. 1161-1169, 2007, doi: 10.1016/j.conbuildmat.2006.06.004

[6] R. Chen, W. Y. D. Yuen, “A study of the scale structure of hot-rolled steel strip by simulated coiling and cooling,” Oxid. Met., vol. 53, no. 5-6, pp. 539-560, 2000, doi: 10.1023/A:1004637127231.

[7] R. Bhattacharya, G. Jha, S. Kundu, R. Shankar, N. Gope, “Influence of cooling rate on the structure and formation of oxide scale in low carbon steel wire rods during hot rolling,” Surf. Coat. Tech., vol. 201, no. 3-4, pp. 526-532, Oct. 2005, doi: 10.1 016/j.surfcoat.2005.12.014

[8] P. Schweitzer, “Atmospheric Corrosion,” in Fundamentals of metallic corrosion: atmospheric and media corrosion of metals (Corrosion Engineering Handbook, 2nd ed.). Boca Raton, US: CRC press, 2006, ch. 2, pp. 39-66.

[9] J.G. Castaño, C.A. Botero, A.H. Restrepo, E.A. Agudelo, E. Correa, F. Echeverría, “Atmospheric corrosion of carbon steel in Colombia,” Corr. Sci., vol. 52, no. 1, pp. 216-223, 2010, doi: 10.1016/j.corsci.2009.09.006

[10] H. Ovčačíková et al., “Possibilities of recycling of oiled scale for preparation of pigments,” Rev. Acta Metallurgica Slovaca-Conference, vol. 4, pp. 90-97, 2014, doi: 10.12776/amsc.v4.217

[11] P. Zevallos, D. Flores, “Síntesis y caracterización de pigmentos de hematita obtenidos a partir de cascarilla de laminación,” B.Sc. Thesis. Fac. Ing. Proc., Univ. Nac. San Agustín, 2015. Available: http://repositorio.unsa.edu.pe/bitstream/handle/UNSA/194/B2-M-18321.pdf?sequence=1&isAllowed=y.

[12] M. S. Quddus et al., “Synthesis and Characterization of Pigment Grade Red Iron Oxide from Mill Scale,” IRJPAC, vol. 16, no. 4, pp. 1-9, 2018, doi: 10.9734/IRJPAC/2018/42935

[13] R. Zboril, M. Mashlan, D. Petridis, “Iron (III) oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications,” Chem. Mater., vol. 14, no. 3, pp. 969-982, 2002, doi: 10.1021/cm0111074

[14] A. C. da Silva et al., “Converting Fe-rich Magnetic Wastes into Active Photocatalysts for Environmental Remediation Processes,” J. Photoch. Photobio. A, vol. 335, pp. 259-267, 2017, doi: 10.1016/j.jphotoche.2016.11.025

[15] J. Balbuena et al., “Preparation of self-cleaning and de-poluting building materials through the valorization of industrial wastes,” in 33rd Cement and Concrete Science Conf., Portsmouth, UK, 2013, pp. 189-194.

[16] V. Della, J. A. Junkes, O. R. K. Montedo, A. P. N. Oliviera, C. R. Rambo, D. Hotza, “Synthesis of hematite from steel scrap to produce ceramic pigments,” Rev. Am. Ceram. Soc. Bull, vol. 86, no. 5, pp. 9101-9108, 2007.

[17] R. M. Cornell , U. Schwertmann, “Transformations,” in The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed. Weinheim, Germany: Wiley-VCH, 2003, ch. 14, pp. 365-409.

[18] J.G. Castaño, C. Arroyave, “La funcionalidad de los óxidos de hierro,” Rev. Metal. Madrid, vol. 34, no. 3, 1998. [Online]. Available: http://revistademetalurgia.revistas.csic.es/index.php/revistademetalurgia/article/view/794/805

[19] G. Buxbaum, G. Pfaff, “Colored Pigments,” in Industrial Inorganic Pigments, 3rd ed. Weinheim, Germany: Wiley-VCH, 2005, ch. 3, pp. 99-162.

[20] A. M. Olmedo, “Estudio de películas de óxidos de hierro crecidas y depositadas en diversos ambientes,” Ph.D. Dissertation, Fac. Cien. Exac. Nat. Univ. Buenos Aires, Argentina, 1990. Available: http://hdl.handle.net/
20.500.12110/tesis_n2320_Olmedo.

[21] M. A. Colpas, C. Gnecco, J.A. Pérez, O. F. Higuera, G. A. Jiménez. “Synthesis of an Anticorrosive Pigment by Thermal Treatment of Iron Oxides from Steel Industry Wastes,” Rev. Fac. Ing., vol. 28, no. 52, pp. 43-58, 2019, doi: 10.19053/01211129.v28.n52.2019.9653

[22] R. Sugrañez et al., “Preparation of sustainable photocatalytic materials through the valorization of industrial wastes,” Rev. ChemSusChem, vol. 6, no. 12, pp. 2340-2347, 2013, doi: 10.1002/cssc.201300449

[23] Métodos generales de ensayo para pigmentos y extensores. Parte 10: Determinación de la densidad. Método del picnómetro, UNE-EN ISO 787-10, 1996.

[24] Standard Test Method for Oil Absorption of Pigments by Spatula Rub-out, ASTM D281-95(2016), 2016, doi: 10.1520/D0281-12R16

[25] L. Schaufler et al., “Seeing Red: Colour space and potential in hematites,” Rev. European Coatings Journal, no. 3, pp. 132-137, 2019.

[26] Standard Test Methods for Coarse Particles in Pigments, ASTM D185-07, 2019.

[27] N. Veeramani, “Inorganic Pigments-II”, Paintindia Mag., vol. 66, no. 6, pp. 86-90, Jun. 2016.

[28] J. Oyarzún, “Physical characterisation of pigments,” in Pigment Procesing: Physico-Chemical Principles, 2nd ed. Hannover, Germany: Vincentz Network, 2015, ch. 1, pp. 13-51.

[29] A. Ribadeneira, “Protección anticorrosiva del acero mediante el uso de pinturas alquídicas con pigmentos de óxido de hierro en atmósferas urbana y subtropical”, B.Sc. Thesis. Fac. Prof. Ing. Agro., Univ. Escuela Politécnica Nacional, 2008. Available: https://bibdigital.epn.edu.ec/handle/15000/1686

[30] J. Calvo, “Pigmentos y Cargas,” in Pinturas y recubrimientos: introducción a su tecnología. Madrid, España: Ediciones Díaz de Santos, 2009, ch. 2, pp. 9-29.

[31] F. Jones, M. Nichols, S. Pappas, “Pigment Dispersion,” in Organic Coatings: Science and Technology, 4th ed, Hoboken, US: John Wiley & Sons, 2017, ch. 21, pp. 307-322.

[32] D. Mannari and C. Patel. “Pigments,” in Understanding Coatings Raw Materials. Hannover, Germany: Vincentz Network, 2015, ch. 3, pp. 139-208.

[33] A. A. Velásquez, D. Jaramillo Raquejo, “Characterization of the corrosion products of one of the
pedestrian paths of the bridge “Punto Cero” in the city of Medellin, Colombia,” J. Phys.: Conf. Ser., vol. 1247, Paper. 012022, Jun. 2019, pp. 1-10. doi: 10.1088/1742-6596/1247/1/012022