Publicado 2020-04-27
Palabras clave
- amputación transtibial,
- mecanismo pie-tobillo,
- diseño axiomático
Cómo citar
Derechos de autor 2020 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
La rehabilitación de personas con discapacidad motora, derivada de la amputación transtibial, es una tarea compleja que requiere del uso de diferentes ayudas técnicas, como prótesis, para una efectiva realización. Según el análisis de los antecedentes consultados, las diferentes soluciones presentan una limitada información sobre el procedimiento de diseño seguido para asegurar un adecuado comportamiento en un determinado entorno. En este sentido, considerando el contexto colombiano, este trabajo propone el diseño axiomático para la especificación de un mecanismo pie-tobillo de una prótesis transtibial, que permita emular la marcha natural. Por lo que, centrándose en el usuario, se realizó un refinamiento progresivo de los requisitos funcionales que permitió definir claramente la secuencia de especificación de acuerdo con los parámetros de diseño, favoreciendo el análisis y síntesis de la solución en diferentes aspectos relacionados con la estética y función.
Descargas
Referencias
[2] “Guía de Práctica Clínica para el diagnóstico y tratamiento preoperatorio, intraoperatorio y postoperatorio de la persona amputada, la prescripción de la prótesis y la rehabilitación integral”, Google Docs, [En línea]. Disponible: https://docs.google.com/document/d/1H819kU_JFvyU9uutxTn9SA988ktTQPGm-q3S2qWgChw/edit.
[3] M. L. Ocampo, L. M. Henao, V. Lorena, “Amputación de miembro inferior: cambios funcionales, inmovilización y actividad física”, Universidad del Rosario. Fac. Rehabiltación y Derechos Humanos, vol. 42, pp. 1–26, 2010.
[4] «Victimas de Minas Antipersonal,» Dirección contra minas, [En línea]. Available: http://www.accioncontraminas.gov.co/estadisticas/Paginas/victimas-minas-antipersonal.aspx
[5] D. A. Vargas Castillo, “Comportamiento de muertes y lesiones por accidentes de transporte: Colombia, año 2014”, Forensis datos para la vida, vol. 16, no. 1, pp. 352-406, 2015.
[6] “Diabetes”, Organización Mundial de la Salud, [En línea]. Disponible: http://www.who.int/mediacentre/factsheets/fs312/es/
[7] “Diabetes Atlas”, International Diabetes Federation, [En línea]. Disponible: http://www.idf.org/diabetesatlas/5e/es/diabetes%20REFERENCIA%207%7D
[8] DANE, “DANE información para todos”, 2020. [En línea]. Disponible: https://www.dane.gov.co/files/investigaciones/boletines/ech/ech/pres_web_empleo_resultados_ene_20.pdf.
[9] J. C. Gómez Beltrán, “Discapacidad en Colombia: Reto para la inclusión en Capital Humano,” Fundación Saldarriaga Concha. Colombia Líder, Bogotá, Colombia, 2010.
[10] M. R. Pitkin, Biomechanics of Lower Limb Prosthetics. Boston, MA, USA: Springer, 2010.
[11] S. Salazar Salgado, “Alineación en prótesis de miembro inferior por encima de rodilla,” trabajo de grado, Universidad EIA, Antioquia, Colombia, 2012.
[12] P. Cherelle, A. Matthys, V. Grosu, B. Vanderborght, D. Lefeber, “The AMP-Foot 2.0: Mimicking intact ankle behavior with a powered transtibial prosthesis,” Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2012, pp. 544–549, doi: 10.1109/BioRob.2012.6290783
[13] “Centro de Rehabilitación en Ortesis y Protésis- Laboratorio Gilete,” Ösur, [En línea]. Available: https://assets.ossur.com/library/26721/PROPRIO.
[14] S. K. Au, J. Weber y H. Herr, “Powered Ankle–Foot Prosthesis Improves Walking Metabolic Economy,” Ieee Transactions On Robotics, vol. 25, no. 1, pp. 51-66, 2009.
[15] Ottobock, “Meridium: Microprocessor Foot,” Ottobock, [En línea]. Disponible: https://www.ottobock.co.uk/prosthetics/lower-limb-prosthetics/prosthetic-product-systems/meridium/.
[16] R. D. Bellman, M. A. Holgate, T. G. Sugar, “SPARKy 3: Design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics,” en Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, pp. 511–516, doi: 10.1109/BIOROB.2008.4762887
[17] M. Grimmer et al., “A powered prosthetic ankle joint for walking and running,” Biomed. Eng. Online, vol. 15, no. S3, p. 141, Dec. 2016. doi: 10.1186/s12938-016-0286-7
[18] J. Zhu, H. She, Q. Huang, “PANTOE II: Improved Version of a Powered Transtibial Prosthesis With Ankle and Toe Joints,” en 2018 Design of Medical Devices Conference, 2018, doi: 10.1115/DMD2018-6942
[19] J. D. Lee, L. M. Mooney, E. J. Rouse, “Design and Characterization of a Quasi-Passive Pneumatic Foot-Ankle Prosthesis,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 7, pp. 823-831, 2017, doi: 10.1109 / TNSRE.2017.2699867
[20] Fillauer, “Fillauer,” [En línea]. Disponible: http://fillauer.com/Lower-Extremity-Prosthetics/feet/raize.html.
[21] Trulife, “Seattle Catalyst 9 and Seattle Catalyst,” [En línea]. Disponible: https://trulife.com/distributor/prosthetics/marketing/sales-sheets/A3341_Seattle%20Catalyst_Catalyst%209_0415.pdf.
[22] P. Cherelle et al., “The Ankle Mimicking Prosthetic Foot 3—Locking mechanisms, actuator design, control and experiments with an amputee,” Rob. Auton. Syst., vol. 91, pp. 327–336, May 2017. doi: 10.1016/j.robot.2017.02.004
[23] M. K. Sheperd y E. J. Rouse, “The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis with Continuously Variable Stiffness,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 12, pp. 2375-2386, 2017. doi: 10.1109/TNSRE.2017.2750113
[24] “JAIPURFOOT,” [En línea]. Disponible: http://jaipurfoot.org/.
[25] Y. Feng , Q. Wang, “Combining Push-Off Power and Nonlinear Damping Behaviors for a Lightweight Motor-Driven Transtibial Prosthesis,” IEEE/ASME Transactions On Mechatronics, vol. 22, no. 6, pp. 2512-2523, 2017. doi: 10.1109 / TMECH.2017.2766205
[26] Y. Zeng, “Design and testing of a passive prosthetic ankle with mechanical performance similar to that of a natural ankle”, tesis de maestría, Marquette University, Milwaukee, WI, 2013.
[27] Endolite A BLATCHFORD Company, “ENDOLITE USA,” [En línea]. Disponible: https://www.endolite.com/products/elan.
[28] Össur, “Össur LIFE WITHOUT LIMITATIONS,” Össur, [En línea]. Available: https://www.ossur.com/prosthetic-solutions/products/sport-solutions/flex-run.
[29] R. Holgate, T. Sugar, A. Nash, J. Kianpour, C. T. Johnson, E. Santos, “A Passive Ankle-Foot Prosthesis With Energy Return to Mimic Able-Bodied Gait”, en Volume 5A: 41st Mechanisms and Robotics Conference, 2017, doi: 10.1115/DETC2017-67192
[30] S. G. Bhat, “Design and Development of a Passive Prosthetic Ankle”, tesis de maestría, Arizona State University, AZ, 2017.
[31] L. Robayo, “Joven colombiano diseña prótesis de bajo costo impresas en 3D,” el Nuevo Herald, [En línea]. Disponible: http://www.elnuevoherald.com/noticias/mundo/america-latina/colombia-es/article3500673.html.
[32] M. Latash, Neurophysiological Basis of Movement-2nd Edition. Pensilvania, PA, USA: Human Kinetic, 2008.
[33] F. Dujardin, A.-C. Tobenas-Dujardin, y J. Weber, “Anatomía y fisiología de la marcha, de la posición sentada y de la bipedestación,” EMC - Apar. Locomot., vol. 42, no. 3, pp. 1–20, 2009. doi: 10.1016/S1286-935X(09)70892-5
[34] M. Nordin y V. H. Frankel, “Biomecánica del pie y el tobillo”, en Biomecánica básica Del Sistema Musculoesquelético, 3ra en español ed., Basauri, McGraw-Hill, 2004, pp. 228-264.
[35] N.-p. Suh, Axiomatic Design: advances and applications, MIT-Pappalardo series in Mechanical Engineering-1st Edition, Oxford, Reino Unido: Oxford University Press, 2001.
[36] B. Mishler, “What are K Levels?,” ottobock, 2017. [En línea]. Disponible: https://www.ottobockus.com/therapy/resources-for-prosthetics/what-are-k-levels.html.
[37] R. S. Gailey et al., “The Amputee Mobility Predictor: An instrument to assess determinants of the lower-limb amputee’s ability to ambulate,” Arch. Phys. Med. Rehabil., vol. 83, no. 5, pp. 613–627, May 2002, doi: 10.1053/apmr.2002.32309.
[38] M. Grimmer y A. Seyfarth, “Chapter 5 Mimicking Human-Like Leg Function”, de Neuro-Robotics From Brain Machine Interfaces to Rehabilitation Robotics, Dordrecht, Springer, 2014, pp. 105-156.
[39] M. S. Orendurff, S. U. Raschke, L. Winder, D. Moe, D. A. Boone, T. Kobayashi, “Functional level assessment of individuals with transtibial limb loss: Evaluation in the clinical setting versus objective community ambulatory activity,” Journal of Rehabilitation and Assistive RATE, vol. 3, pp. 1-6, 2016, doi: 10.1177/2055668316636316
[40] D. A. Winter, The BIOMECANICS and MOTOR CONTROL of HUMAN GAIT. Waterloo, Ontario, Canada: University of Waterloo Press, 1988.
[41] Prosthetis - structural testing of lower-limb prostheses - requirements and test methods, International Standard ISO, ISO 10328:2016 (E), Swizerland, 2016.
[42] C. Colombo, E. G. Marchesin, L.Vergani, E. Boccafogli, G. Verni, “Study of an ankle prosthesis for children: adaptation of ISO 10328 and experimental tests,” Procedia Eng., vol. 10, pp. 3510–3517, 2011. doi: 10.1016/j.proeng.2011.04.58
[43] “Revista Semana”, Colombia en cifras, 30 10 2011. [En línea]. Disponible: https://www.semana.com/especiales/articulo/el-colombiano-promedio/248604-3.
[44] S. Au, H. Herr, “Powered ankle-foot prosthesis,” IEEE Robot. Autom. Mag., vol. 15, no. 3, pp. 52–59, Sep. 2008. doi: 10.1109/MRA.2008.927697
[45] M. L. Palmer, “Sagittal plane characterization of normal human ankle function across a range of walking gait speeds”, tesis de maestría, Massachusetts Institute of Technology, MA, USA, 2002.
[46] D. H. Gates, “Characterizing ankle fuction during stair ascent, descent, and level walking for ankle prothesis and orthosis design”, tesis de maestría, University of virginia, VA, USA, 2002.
[47] S. K. W. Au, “Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy”, tesis doctoral, Massachusetts Institute of Technology, MA,USA, 2007.
[48] Mathworks, “Documentación fmincon”, [En línea]. Disponible: https://la.mathworks.com/help/optim/ug/fmincon.html