Revisión de las medidas en pro de la eficiencia energética y la sostenibilidad de la industria del cemento a nivel mundial

Resumen

El presente artículo contempla una revisión bibliográfica de las medidas que pueden llevarse a cabo dentro de la industria de producción de cemento, para hacer un consumo racional y eficiente de los recursos energéticos demandados, y, al mismo tiempo, mejorar los indicadores de sostenibilidad, gracias a la disminución en la emisión de contaminantes y GEI. La revisión inicia con la caracterización de esta industria a nivel mundial, consumos específicos, procesos, equipos y materias primas, para establecer en cuáles etapas del proceso existen oportunidades de mejora en el consumo energético. Posterior a esto, se describen las medidas en eficiencia energética de los equipos macroconsumidores de energía, como lo es el horno de producción de clinker. Por último, se muestran posibles sustitutos a los combustibles fósiles convencionalmente usados y tecnologías que aprovechan las energías renovables, con el fin de buscar una industria eficiente y sostenible.

Palabras clave: industria del cemento, combustible alternativo, producción de clinker, eficiencia energética, recuperación de energía, GEI

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] S. Licht et al., “STEP cement: Solar Thermal Electrochemical Production of CaO without CO2 emission,” Chem. Commun., 2012, doi: 10.1039/c2cc31341c

[2] N. A. Madlool, R. Saidur, N. A. Rahim, M. Kamalisarvestani, “An overview of energy savings measures for cement industries,” Renew. Sustain. Energy Rev., vol. 19, pp. 18–29, 2013, doi: 10.1016/j.rser.2012.10.046

[3] N. A. Madlool, R. Saidur, M. S. Hossain, N. A. Rahim, “A critical review on energy use and savings in the cement industries,” Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 2042–2060, 2011, doi: 10.1016/j.rser.2011.01.005

[4] J. Liu, S. Zhang, F. Wagner, “Exploring the driving forces of energy consumption and environmental pollution in China ’ s cement industry at the provincial level,” J. Clean. Prod., vol. 184, pp. 274–285, 2018, doi: 10.1016/j.jclepro.2018.02.277

[5] D. L. Summerbell, C. Y. Barlow, J. M. Cullen, “Potential reduction of carbon emissions by performance improvement : A cement industry case study,” J. Clean. Prod., vol. 135, pp. 1327–1339, 2016, doi: 10.1016/j.jclepro.2016.06.155

[6] L. Zhang, W. E. Mabee, “Comparative study on the life-cycle greenhouse gas emissions of the utilization of potential low carbon fuels for the cement industry,” J. Clean. Prod., vol. 122, pp. 102–112, 2016, doi: 10.1016/j.jclepro.2016.02.019

[7] S. A. Ishak, H. Hashim, T. S. Ting, “Eco innovation strategies for promoting cleaner cement manufacturing,” J. Clean. Prod., vol. 136, pp. 133–149, 2016, doi: 10.1016/j.jclepro.2016.06.022

[8] G. Tesema, E. Worrell, “Energy efficiency improvement potentials for the cement industry in Ethiopia,” Energy, vol. 93, pp. 2042–2052, 2015, doi: 10.1016/j.energy.2015.10.057

[9] K. H. Karstensen, C. J. Engelsen, S. Ng, P. K. Saha, M. N. Malmedal, “Cement Manufacturing and Air Quality,” vol. 73, pp. 683–705, 2016

[10] S. Berriel, Y. Díaz, H. J.F.M, H. G, “Assessment of Sustainability of Low Carbon Cement in Cuba . Cement Pilot Production and Prospective Case,” Calcined Clays Sustain. Concr., vol. RILEM Book, no. 10, pp. 189–194, 2015, doi: 10.1007/978-94-017-9939-3

[11] UPME, “Ahorro de energía en la industria del cemento,” 2013. [Online]. Available: http://www.si3ea.gov.co/Portals/0/Gie/Procesos/cemento.pdf.

[12] J. C. Brunke, M. Blesl, “Energy conservation measures for the German cement industry and their ability to compensate for rising energy-related production costs,” J. Clean. Prod., vol. 82, pp. 94–111, 2014, doi: 10.1016/j.jclepro.2014.06.074

[13] D. Song, “Extended Exergy Accounting For Energy Consumption and CO2 Emissions of Cement Industry—A Basic Framework,” Energy Procedia, vol. 88, pp. 305–308, 2016, doi: 10.1016/j.egypro.2016.06.145

[14] C. A. Tsiliyannis, “Cement manufacturing using alternative fuels : Enhanced productivity and environmental compliance via oxygen enrichment,” Energy, vol. 113, pp. 1202–1218, 2016, doi: 10.1016/j.energy.2016.07.082

[15] Scopus, “Scopus - Analyze search results.” 2020.

[16] S. Zhang, H. Ren, W. Zhou, Y. Yu, T. Ma, C. Chen, “Assessing air pollution abatement co-benefits of energy efficiency improvement in cement industry: A city level analysis,” J. Clean. Prod., 2018, doi: 10.1016/j.jclepro.2018.02.293

[17] B. Herrera et al., “Use of thermal energy and analysis of barriers to the implementation of thermal ef fi ciency measures in cement production : Exploratory study in Colombia,” Energy, vol. 140, pp. 1047–1058, 2017.

[18] FICEM, “Informe Estadístico 2013,” Bogotá D.C, 2013. [Online]. Available: http://www.ficem.org/estadisticas/informe_estadistico_2013.pdf.

[19] C. Gacía Arbelaéz, G. Vallejo, M. Lou Higgins, And E. M. Escobar, El Acuerdo De París Así Actuará Colombia Frente Al Cambio Climático. 2016.

[20] W. Bulege, “COP 21: Acuerdo contra el cambio climático en Paris,” Apunt. cienc. soc. 2015;, vol. 05, no. 02, pp. 186–187, 2015, doi: 10.18259/acs.2015027

[21] J. J. Fierro, A. Escudero-Atehortua, C. Nieto-Londoño, M. Giraldo, H. Jouhara, L. C. Wrobel, “Evaluation of waste heat recovery technologies for the cement industry,” Int. J. Thermofluids, vol. 7–8, 2020, doi: 10.1016/j.ijft.2020.100040

[22] D. Garcıa, D. Garraı, “Life cycle assessment of the Spanish cement industry : implementation of environmental-friendly solutions,” Clean Techn Env. Policy, vol. 17, pp. 59–73, 2015, doi: 10.1007/s10098-014-0757-0

[23] S.-Y. Huh, H. Lee, J. Shin, D. Lee, J. Jang, “Inter-fuel substitution path analysis of the korea cement industry,” Renew. Sustain. Energy Rev., vol. 82, pp. 4091–4099, 2018, doi: 10.1016/j.rser.2017.10.065

[24] S. R. Hossain, I. Ahmed, F. S. Azad, A. S. M. Monjurul Hasan, “Empirical investigation of energy management practices in cement industries of Bangladesh,” Energy, vol. 212, p. 118741, 2020, doi: 10.1016/j.energy.2020.118741

[25] C.-Y. Zhang, R. Han, B. Yu, Y.-M. Wei, “Accounting process-related CO 2 emissions from global cement production under Shared Socioeconomic Pathways,” J. Clean. Prod., vol. 184, pp. 451–465, 2018, doi: 10.1016/j.jclepro.2018.02.284

[26] M. J. S. Zuberi, M. K. Patel, “Bottom-up analysis of energy ef fi ciency improvement and CO2 emission reduction potentials in the Swiss cement industry,” J. Clean. Prod., vol. 142, pp. 4294–4309, 2017, doi: 10.1016/j.jclepro.2016.11.178

[27] B. Afkhami, B. Akbarian, N. Beheshti A., A. H. Kakaee, B. Shabani, “Energy consumption assessment in a cement production plant,” Sustain. Energy Technol. Assessments, vol. 10, pp. 84–89, 2015, doi: 10.1016/j.seta.2015.03.003

[28] S. Fellaou, T. Bounahmidi, “Analyzing thermodynamic improvement potential of a selected cement manufacturing process: Advanced exergy analysis,” Energy, vol. 154, pp. 190–200, 2018, doi: 10.1016/j.energy.2018.04.121

[29] M. Huang et al., “Evaluation of oil sludge as an alternative fuel in the production of Portland cement clinker,” vol. 152, pp. 226–231, 2017, doi: 10.1016/j.conbuildmat.2017.06.157

[30] S. A. Miller, F. C. Moore, “Climate and health damages from global concrete production,” Nat. Clim. Chang., vol. 10, no. 5, pp. 439–443, 2020, doi: 10.1038/s41558-020-0733-0

[31] F. S. Hashem, T. A. Razek, H. A. Mashout, “Rubber and plastic wastes as alternative refused fuel in cement industry,” Constr. Build. Mater., vol. 212, pp. 275–282, 2019, doi: 10.1016/j.conbuildmat.2019.03.316

[32] A. Mokhtar, M. Nasooti, “A decision support tool for cement industry to select energy efficiency measures,” Energy Strateg. Rev., vol. 28, no. November 2016, p. 100458, 2020, doi: 10.1016/j.esr.2020.100458

[33] S. Karellas, A. Leontaritis, G. Panousis, E. Bellos, E. Kakaras, “Energetic and exergetic analysis of waste heat recovery systems in the cement industry,” Energy, vol. 58, pp. 147–156, 2013, doi: 10.1016/j.energy.2013.03.097

[34] A. Atmaca, R. Yumrutaş, “Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry,” Appl. Therm. Eng., vol. 66, no. 1–2, pp. 435–444, 2014, doi: 10.1016/j.applthermaleng.2014.02.038

[35] Z. Wen, M. Chen, F. Meng, “Evaluation of energy saving potential in China’s cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis,” Energy Policy, vol. 77, pp. 227–237, 2015, doi: 10.1016/j.enpol.2014.11.030

[36] S. Fellaou, T. Bounahmidi, “Evaluation of energy efficiency opportunities of a typical Moroccan cement plant : Part I . Energy analysis,” Appl. Therm. Eng., vol. 115, pp. 1161–1172, 2017, doi: 10.1016/j.applthermaleng.2017.01.010

[37] A. Talaei, D. Pier, A. V. Iyer, M. Ahiduzzaman, A. Kumar, “Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry,” Energy, vol. 170, pp. 1051–1066, 2019, doi: 10.1016/j.energy.2018.12.088

[38] A. Atmaca, R. Yumrutas, “Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry,” Appl. Therm. Eng., vol. 66, 2014, doi: 10.1016/j.applthermaleng.2014.02.038

[39] Y.-H. Huang, Y.-L. Chang, T. Fleiter, “A critical analysis of energy efficiency improvement potentials in Taiwan’s cement industry,” Energy Policy, vol. 96, pp. 14–26, 2016, doi: 10.1016/j.enpol.2016.05.025

[40] W. R. Morrow III, A. Hasanbeigi, J. Sathaye, T. Xu, “Assessment of energy efficiency improvement and CO2 emission reduction potentials in India’s cement and iron & steel industries,” J. Clean. Prod., vol. 65, pp. 131–141, 2014, doi: 10.1016/j.jclepro.2013.07.022

[41] Höganäs Bjuf Refractories, “Refractories for the cement industry Kiln Höganäs Bjuf Refractories,” Bjuv, , 2016. Accessed: Dec. 09, 2016. [Online]. Available: http://cement.hoganasbjuf.com/en/Knowledge/~/media/Files/HoganasBjufCement/Downloads/HEA_handbook_kiln_magnus_v1_screen.pdf.

[42] K. T. Kaddatz, M. G. Rasul, A. Rahman, “Alternative fuels for use in cement kilns: Process impact modelling,” Procedia Eng., vol. 56, pp. 413–420, 2013, doi: 10.1016/j.proeng.2013.03.141

[43] A. Mittal, D. Rakshit, “Energy audit and waste heat recovery from kiln hot shell surface of a cement plant,” Therm. Sci. Eng. Prog., vol. 19, no. January, p. 100599, 2020, doi: 10.1016/j.tsep.2020.100599

[44] A. Mittal, D. Rakshit, “Utilization of cement rotary kiln waste heat for calcination of phosphogypsum,” Therm. Sci. Eng. Prog., vol. 20, no. September, p. 100729, 2020, doi: 10.1016/j.tsep.2020.100729

[45] V. Alcántara et al., “A study case of energy efficiency , energy profile , and technological gap of combustion systems in the Colombian lime industry,” vol. 128, pp. 393–401, 2018.

[46] E. Commission, “Reference Document on Best Available Techniques in Cement , Lime and Magnesium Oxide Manufacturing Industries,” no. May, 2010.

[47] A. Hasanbeigi, W. Morrow, E. Masanet, J. Sathaye, and T. Xu, “Energy efficiency improvement and CO 2 emission reduction opportunities in the cement industry in China,” Energy Policy, vol. 57, pp. 287–297, 2013, doi: 10.1016/j.enpol.2013.01.053

[48] E. Benhelal, G. Zahedi, E. Shamsaei, A. Bahadori, “Global strategies and potentials to curb CO2 emissions in cement industry,” J. Clean. Prod., vol. 51, pp. 142–161, 2013, doi: 10.1016/j.jclepro.2012.10.049

[49] R. Loni, G. Najafi, E. Bellos, F. Rajaee, Z. Said, and M. Mazlan, “A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook,” J. Clean. Prod., vol. 287, 2021, doi: 10.1016/j.jclepro.2020.125070

[50] P. Strother, Manufacture of Portland Cement, 5th ed. Elsevier Ltd., 2019.

[51] T. Harrison, M. R. Jones, and D. Lawrence, The Production of Low Energy Cements, 5th ed. Elsevier Ltd., 2019.

[52] M. Georgiopoulou, G. Lyberatos, “Life cycle assessment of the use of alternative fuels in cement kilns : A case study,” J. Environ. Manage., pp. 1–11, 2018, doi: 10.1016/j.jenvman.2017.07.017

[53] P. V Nidheesh and M. S. Kumar, An overview of environmental sustainability in cement and steel production. Elsevier B.V., 2019.

[54] H. Mikulčić, J. J. Klemeš, M. Vujanović, K. Urbaniec, N. Duić, “Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process,” J. Clean. Prod., vol. 136, pp. 119–132, 2016, doi: 10.1016/j.jclepro.2016.04.145

[55] A. L. H. R. El-Salamony, H. M. Mahmoud, N. Shehata, “Enhancing the efficiency of a cement plant kiln using modified alternative fuel,” Environ. Nanotechnology, Monit. Manag., vol. 14, no. December 2019, 2020, doi: 10.1016/j.enmm.2020.100310

[56] A. Tsiligiannis, C. Tsiliyannis, “Renewable energy in cement manufacturing : A quantitative assessment of energy and environmental efficiency of food residue biofuels,” Renew. Sustain. Energy Rev., vol. 107, no. February, pp. 568–586, 2019, doi: 10.1016/j.rser.2019.03.009

[57] C. E. Aristizábal-alzate, J. L. González-manosalva, “Effectiveness analysis of the ITM environmental programs : saving and efficient use of electric energy and water , and comprehensive solid waste management . A case study,” DYNA, vol. 85, no. 207, pp. 36–43, 2018, doi: http://doi.org/10.15446/dyna.v85n207.69309

[58] C. Horsley, M. H. Emmert, A. Sakulich, “Influence of alternative fuels on trace element content of ordinary portland cement,” Fuel, vol. 184, pp. 481–489, 2016, doi: 10.1016/j.fuel.2016.07.038

[59] A. C. ( Thanos, ) Bourtsalas, J. Zhang, M. J. Castaldi, N. J. Themelis, “Use of non-recycled plastics and paper as alternative fuel in cement production,” J. Clean. Prod., vol. 181, pp. 8–16, 2018, doi: 10.1016/j.jclepro.2018.01.214

[60] F. Rezaee, S. Danesh, M. Tavakkolizadeh, “Investigating chemical , physical and mechanical properties of eco-cement produced using dry sewage sludge and traditional raw materials,” J. Clean. Prod., vol. 214, pp. 749–757, 2019, doi: 10.1016/j.jclepro.2018.12.153

[61] F. S. Hashem, T. A. Razek, H. A. Mashout, “Rubber and plastic wastes as alternative refused fuel in cement industry,” Constr. Build. Mater., vol. 212, pp. 275–282, 2019, doi: 10.1016/j.conbuildmat.2019.03.316

[62] A. Tsiligiannis, C. Tsiliyannis, “Renewable energy in cement manufacturing: A quantitative assessment of energy and environmental efficiency of food residue biofuels,” Renew. Sustain. Energy Rev., vol. 107, no. March, pp. 568–586, 2019, doi: 10.1016/j.rser.2019.03.009

[63] T. Hanein, F. P. Glasser, M. N. Bannerman, “Thermodynamic data for cement clinkering,” Cem. Concr. Res., vol. 132, no. March, p. 106043, 2020, doi: 10.1016/j.cemconres.2020.106043

[64] D. Fernández-González, J. Prazuch, I. Ruiz-Bustinza, C. González-Gasca, J. Piñuela-Noval, L. F. Verdeja, “Solar synthesis of calcium aluminates,” Sol. Energy, vol. 171, pp. 658–666, Sep. 2018, doi: 10.1016/J.SOLENER.2018.07.012

[65] S. Licht, B. Cui, B. Wang, “STEP carbon capture - The barium advantage,” J. CO2 Util., 2013, doi: 10.1016/j.jcou.2013.03.006

[66] B. Wang, D. Gu, J. Dong, D. Yuan, L. Zhu, “STEP chemistry: A fundamental insight into solar thermal electrochemical process,” Energy Convers. Manag., 2017, doi: 10.1016/j.enconman.2017.09.045

[67] L. Al-Ghussain, H. Ahmed, F. Haneef, “Optimization of hybrid PV-wind system: Case study Al-Tafilah cement factory, Jordan,” Sustain. Energy Technol. Assessments, vol. 30, no. August, pp. 24–36, 2018, doi: 10.1016/j.seta.2018.08.008

[68] G. Moumin et al., “CO2 emission reduction in the cement industry by using a solar calciner,” Renew. Energy, vol. 145, pp. 1578–1596, 2020, doi: 10.1016/j.renene.2019.07.045

[69] D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, R. Gorini, “The role of renewable energy in the global energy transformation,” Energy Strateg. Rev., vol. 24, no. June 2018, pp. 38–50, 2019, doi: 10.1016/j.esr.2019.01.006

[70] T. Welton, “Solvents and sustainable chemistry.,” Proc. R. Soc. A, vol. 471, no. 2183, pp. 1–26, 2015, doi: 10.1098/rspa.2015.0502.

[71] A. Hasanbeigi, L. Price, E. Lin, “Emerging energy-efficiency and CO2emission-reduction technologies for cement and concrete production: A technical review,” Renew. Sustain. Energy Rev., vol. 16, no. 8, pp. 6220–6238, 2012, doi: 10.1016/j.rser.2012.07.019
Publicado
2021-05-10