Análisis aerodinámico de un vehículo aéreo no tripulado con forma de halcón para monitoreo de fugas de hidrocarburos

Resumen

La red de oleoductos requiere monitoreo periódico para detectar daños que puedan causar fugas de hidrocarburos con severo daño ambiental. Estos daños pueden generarse por interferencia de terceros, tales como trabajos de construcción, sabotaje, vandalismo, excavaciones y sustracción ilegal de hidrocarburos. Para detectar daños en oleoductos pueden utilizarse vehículos aéreos no tripulados (UAVs) con cámaras infrarrojas y sistemas de procesamiento de imágenes. Este trabajo presenta el análisis aerodinámico de un UAV con forma de halcón (envergadura de 2,20 m y longitud de 1,49 m) para aplicación potencial en la detección de fallas de oleoductos. Un prototipo a escala de 1:6,5 es fabricado usando una impresora 3D. Los coeficientes aerodinámicos del UAV son determinados usando simulaciones de dinámica de fluidos computacionales (CFD) y pruebas experimentales con un túnel de viento subsónico. Además, los coeficientes de sustentación y arrastre del UAV son obtenidos como función del número de Reynolds y el ángulo de ataque. También, el perfil de velocidad del aire alrededor del UAV es estimado con el modelo CFD. El UAV propuesto podría disminuir los costos de inspección de oleoductos en comparación con el uso de helicópteros o vehículos aéreos ligeros.

Palabras clave: análisis aerodinámico, cámara infrarroja, dinámica de fluidos computacionales, coeficiente de arrastre, coeficiente de sustentación, fuga de hidrocarburos, industria petrolera, oleoductos, túnel de viento subsónico, vehículo aéreo no tripulado

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] T. Shu-Jiao, W. Zong-Zhi, W. Ru-Jun, W. Hao, “Fire risk study of long-distance oil and gas pipeline based on QRA,” Procedia Eng., vol. 135, pp. 369-375, 2016, doi: 10.1016/j.proeng.2016.01.144

[2] C. Gómez, D.R. Green, “Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping,” Arab. J. Geosci., vol. 10, no. 202, pp. 1-17, 2017. doi: 10.1007/s12517-017-2989-x

[3] D. Rifai, A.N. Abdalla, R. Razali, K. Ali, M.A. Faraj, “An Eddy current testing platform system for pipe defect inspection based on an optimized Eddy current technique probe design,” Sensors, vol. 17, no. 3, pp. 579, 2017. doi: 10.3390/s17030579

[4] H. Iqbal, S. Tesfamariam, H. Haider, R. Sadiq, “Inspection and maintenance of oil & gas pipelines: a review of policies,” Struct. Infrastruct. Eng., vol. 13, no. 6, pp. 794-815, 2016. doi: 10.1080/15732479.2016.1187632

[5] Mohamed, M.S. Hamdi, S. Tahar, “Using Computational Intelligence for the Safety Assessment of Oil and Gas Pipelines: A Survey,” in Data Science and Big Data: An Environment of Computational Intelligence. Studies in Big Data, Pedrycz, W., Chen, S.M., Eds.; Cham: Springer International Publishing, 2017, pp. 189-207.

[6] Y. Guo, X. Meng, D. Wang, T. Meng, S. Liu, “Comprehensive risk evaluation of long-distance oil and gas transportation pipelines using a fuzzy Petri net model,” J. Nat. Gas Sci. Eng., vol. 33, pp. 18-29, 2016. doi: 10.1016/j.jngse.2016.04.052

[7] S. B. Da Cunha, “A review of quantitative risk assessment of onshore pipelines,” J. Loss Prev. Proc. Ind., vol. 44, pp. 282-298, 2016. doi: 10.1016/j.jlp.2016.09.016

[8] Q. Zhou, W. Wu, D. Liu, K. Li, Q. Qiao, “Estimation of corrosion failure likelihood of oil and gas pipeline based on fuzzy logic approach,” Eng. Fail. Anal., vol. 70 pp. 48-55, 2016. doi: 10.1016/j.engfailanal.2016.07.014

[9] D. Yuhua, Y. Datao, “Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis,” J. Loss Prev. Proc. Ind., vol. 18, no. 2, pp. 83-88, 2005. doi: 10.1016/j.jlp.2004.12.003

[10] W. Liang, J. Hu, L. Zhang, C. Guo, W. Lin, “Assessing and classifying risk of pipeline third-party interference based on fault tree and SOM,” Eng. Appl. Artif. Intel., vol. 25, no. 3, pp. 594-608, 2012. doi: 10.1016/j.engappai.2011.08.010

[11] C. O. Okpo, R. C. Eze, “Vandalization of oil pipelines in the niger Delta region of Nigeria and poverty: an overview,” Stud. Sociol. Sci., vol. 3, no. 2, pp. 13-21, 2012. doi: 10.3968/j.sss.1923018420120302.2950

[12] R. Standard, 2014. Police probe theft of oil from pipeline under Nick Clegg’s country residence - Crime, London Evening Standard [Online]. Available: http://www.standard.co.uk/news/crime/police-probe-theft-of-oil-from-pipeline-under-nickcleggs-country-residence-9659184.html

[13] P. E. Igbinovia, Oil Thefts and Pipeline Vandalization in Nigeria. Ibadan, Nigeria: Safari Books, 2014.

[14] J. Sun, Z. Zhang, X. Sun, “The intelligent crude oil anti-theft system Based on IoT under different scenarios,” Proc. Comp. Sci., vol. 96, pp. 1581-1588, 2016. doi: 10.1016/j.procs.2016.08.205

[15] P. W. Parfomak, Keeping America's pipelines safe and secure: key issues for congress, Congressional Research Service, 2011 [Online]. Available: http://fas.org/sgp/crs/homesec/R41536.pdf

[16] J. Eze, C. Nwagboso, P. Georgakis, “Framework for integrated oil pipeline monitoring and incident mitigation systems,” Rob. Comp. Integ. Manuf., vol. 47, pp. 44-52, 2017. doi: 10.1016/j.rcim.2016.12.007

[17] L. Torres, C. Verde, L. Molina, “Leak diagnosis for pipelines with multiple branches based on model similarity,” J. Process Control, vol. 99, pp. 41-53, 2021. doi: 10.1016/j.jprocont.2020.12.003

[18] C. Verde, L. Torres, O. González, “Descentralized scheme for leaks’ location in a branched pipeline,” J. Loss Prev. Process Ind., vol. 43, pp. 18-28, 2016. doi: 10.1016/j.jlp.2016.03.023

[19] O. González, C. Verde, L. Torres, “Leak estimation method for complex pipelines with branch juctions,” J. Press. Vessel Technol., vol. 139, no. 2, pp. 021701, 2017. doi: 10.1115/1.4034403

[20] Sóbester, A.J. Keane, J. Scanlan, N.W. “Bressloff, Conceptual design of UAV airframes using a generic geometry service,” In Proceedings of the Infotech@Aerospace Conferences, Arlington, VA, USA, 2005, pp. 26-29. doi: 10.2514/6.2005-7079

[21] L. Jung-Ryul, C. Chang Min, P. Chan Yik, T Chung Thanh, S. Hye Jin, J. Hyomi, B. F. Eric, “Spar disbond visualization in in-service composite UAV with ultrasonic propagation imager,” Aerosp. Sci. Technol. vol. 45, pp. 180-185, 2015. doi: 10.1016/j.ast.2015.05.010

[22] P. Panagiotou, P. Kaparos, C. Salpingidou, K. Yakinthos, “Aerodynamic design of a MALE UAV,” Aerosp. Sci. Technol., vol. 50, pp. 127-138, 2016. doi: 10.1016/j.ast.2015.12.033

[23] P. Panagiotou, S. Fotiadis-Karras, K. Yakinthos, “Conceptual design of a Blended Wing Body MALE UAV,” Aerosp. Sci. Technol., vol. 73, pp. 32-47, 2018. doi: 10.1016/j.ast.2017.11.032

[24] S. Pant, P. Nooralishahi, N.P. Avdelidis, C. Ibarra-Castanedo, M. Genest, S. Deane, J.J. Valdes, A. Zolotas, X. P. V. Maldague, “Evaluation and Selection of Video Stabilization Techniques for UAV-Based Active Infrared Thermography Application,” Sensors, vol. 21, no. 5, pp. 1604, 2021. doi: 10.3390/s21051604

[25] L.I. Kochetkova, “Pipeline monitoring with unmanned aerial vehicles,” J. Phys. Conf. Ser., vol. 1015, no. 4, pp. 20-21, 2021. doi: 10.1088/1742-6596/1015/4/042021

[26] Vertical Technologies, “ DeltaQuad PRO # VIEW,” 2021 [Online]. Available: https://www.deltaquad.com/vtol-drones/view/#specifications

[27] B. Raeisi, H. Alighanbari, “Effects of tilting rate variations on the aerodynamics of the tilting ducted fans mounted at the wing tips of a vertical take-off and landing unmanned aerial vehicle,” Proc. IMechE Part G: J. Aerosp. Eng., vol. 232, no. 10, pp. 1803-1813, 2018. doi: 10.1177/0954410017703146

[28] X. Du, A. Dori, E. Divo, V. Huayamave, F. Zhu, “Modeling the motion of small unmanned aerial system (sUAS) due to ground collision,” Proc. IMechE Part G: J Aerosp. Eng., vol. 232, no. 10, pp. 1961-1970, 2018. doi: 10.1177/0954410017705903

[29] P. D. Bravo-Mosquera, L. Botero-Bolivar, D. Acevedo-Giraldo, H. D. Cerón-Muñoz, “Aerodynamic design analysis of a UAV for superficial research of volcanic environments,” Aerosp. Sci. Technol., vol. 70, pp. 600-614, 2017. doi: 10.1016/j.ast.2017.09.005

[30] F. R. Menter, M. Kuntz, R. Langtry, “Ten years of industrial experience with the SST turbulence model,” in Turbulence, Heat and Mass Transfer 4, K. Hanjalic, Y. Nagano, M. Tummers (Eds.), New York, NY: Begell House Inc, 2003, pp. 625-632.

[31] F. R. Menter, Zonal two equation k– turbulence models for aerodynamic flows. Sunnyvale, CA, USA: AIAA, 1993.

[32] F. Menter, C.J. Ferreira, T. Esch, B. Konno, “The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines,” in International Gas Turbine Congress 2003, Tokyo, IGTC2003-TS-059, 2003, pp. 2-7.

[33] J. E. Bardina, P. G. Huang, T. J. Coakley, “Turbulence Modeling, Validation, Testing and Development,” in NASA Technical Memorandum 110446, 1997.

[34] H. Schlichting, K. Gersten, Boundary-Layer Theory. 9th ed., Berlin: Springer Nature, 2017.

[35] Y. Cengel, Fluid Mechanics Fundamentals and Applications. 3rd ed. New York, NY, USA: McGraw-Hill Education, 2013.

[36] AeroLab, “Educational Wind Tunnel Operations Manual,” University of Colorado Boulder, 2012.

[37] P. J. Boschetti, E. M. Cárdenas, A. Amerio, Aerodynamic optimization of an UAV design. Arlington, VA, USA: American Institute of Aeronautics and Astronautics, 2005. doi: 10.2514/6.2005-7399
Publicado
2021-06-07