Vol. 20 Núm. 1 (2021): Revista UIS Ingenierías
Editorial temática

Tribocorrosión: historia, propiedades, aplicaciones y modelamiento

Darío Yesid Peña-Ballesteros
Universidad Industrial de Santander

Publicado 2020-11-19

Palabras clave

  • tribocorrosión,
  • tribología,
  • corrosión,
  • confiabilidad,
  • materiales

Cómo citar

Peña-Ballesteros, D. Y. (2020). Tribocorrosión: historia, propiedades, aplicaciones y modelamiento. Revista UIS Ingenierías, 20(1), 239–244. https://doi.org/10.18273/revuin.v20n1-2021020

Resumen

La tribocorrosión es el área de conocimiento encarga de estudiar la unión de los fenómenos tribológicos y la corrosión. En esta nota editorial se presenta, a groso modo, aspectos a destacar de la tribocorrosión, se señala la relevancia practica de este campo de investigación para la ciencia de materiales y la ingeniería mecánica. Se relaciona la historia de tribocorrosión, diversas variables a considerar, algunos campos de aplicación identificados y se discute sobre los múltiples desafíos que se presentan en el modelamiento de los sistemas de tribocorrosión.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] J. Villanueva et al., “Corrosion, Tribology, and Tribocorrosion Research in Biomedical Implants: Progressive Trend in the Published Literature,” J. Bio- Tribo-Corrosion, vol. 3, no. 1, pp. 1–8, 2017, doi: 10.1007/s40735-016-0060-1

[2] R. I. M. Asri et al., “Corrosion and surface modification on biocompatible metals: A review,” Mater. Sci. Eng. C, vol. 77, pp. 1261–1274, 2017, doi: 10.1016/j.msec.2017.04.102

[3] D. Young, High Temperature Oxidation and Corrosion of Metals, vol. 1. 2015

[4] M. T. Mathew, P. Srinivasa Pai, R. Pourzal, A. Fischer, M. A. Wimmer, “Significance of tribocorrosion in biomedical applications: Overview and current status,” Adv. Tribol., no. December, 2009, doi: 10.1155/2009/250986

[5] W. Q. Toh, X. Tan, A. Bhowmik, E. Liu, S. B. Tor, “Tribochemical characterization and tribocorrosive behavior of CoCrMo alloys: A review,” Materials (Basel)., vol. 11, no. 1, 2017, doi: 10.3390/ma11010030

[6] M. K. Dimah, F. Devesa Albeza, V. Amigó Borrás, A. Igual Muñoz, “Study of the biotribocorrosion behaviour of titanium biomedical alloys in simulated body fluids by electrochemical techniques,” Wear, vol. 294–295, pp. 409–418, 2012, doi: 10.1016/j.wear.2012.04.014

[7] A. López-Ortega, J. L. Arana, R. Bayón, “Tribocorrosion of Passive Materials: A Review on Test Procedures and Standards,” Int. J. Corros., vol. 2018, 2018, doi: 10.1155/2018/7345346

[8] S. Mischler, “Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation,” Tribol. Int., vol. 41, no. 7, pp. 573–583, 2008, doi: 10.1016/j.triboint.2007.11.003

[9] Y. Wang et al., “Improvement in the tribocorrosion performance of CrCN coating by multilayered design for marine protective application,” Appl. Surf. Sci., vol. 528, no. June, p. 147061, 2020, doi: 10.1016/j.apsusc.2020.147061

[10] W. fang CUI, F. juan NIU, Y. ling TAN, G. wu QIN, “Microstructure and tribocorrosion performance of nanocrystalline TiN graded coating on biomedical titanium alloy,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 29, no. 5, pp. 1026–1035, 2019, doi: 10.1016/S1003-6326(19)65011-9

[11] A. I. Costa, L. Sousa, A. C. Alves, F. Toptan, “Tribocorrosion behaviour of bio-functionalized porous Ti surfaces obtained by two-step anodic treatment,” Corros. Sci., vol. 166, no. July 2019, p. 108467, 2020, doi: 10.1016/j.corsci.2020.108467

[12] S. M. Smith and J. L. Gilbert, “Electrochemical and materials aspects of tribocorrosion systems,” 2006, doi: 10.1088/0022-3727/39/15/S01.

[13] C. Dini, R. C. Costa, C. Sukotjo, C. G. Takoudis, M. T. Mathew, V. A. R. Barão, “Progression of Bio-Tribocorrosion in Implant Dentistry,” Front. Mech. Eng., vol. 6, no. January, 2020, doi: 10.3389/fmech.2020.00001

[14] S. Cao and S. Mischler, “Modeling tribocorrosion of passive metals – A review,” Curr. Opin. Solid State Mater. Sci., vol. 22, no. 4, pp. 127–141, 2018, doi: 10.1016/j.cossms.2018.06.001

[15] S. Fischer, Alfonso; Mischler, “Tribocorrosion : fundamentals , materials,” J. Phys. D. Appl. Phys., vol. 39, no. 15, 2006.

[16] A. Salicio-Paz et al., “Impact of the multilayer approach on the tribocorrosion behaviour of nanocrystalline electroless nickel coatings obtained by different plating modes,” Wear, vol. 456–457, no. June, p. 203384, 2020, doi: 10.1016/j.wear.2020.203384

[17] Y. Zhu, M. Dong, J. Li, L. Wang, “The improved corrosion and tribocorrosion properties of TiSiN/Ag by thermal treatment,” Surf. Coatings Technol., vol. 385, no. January, p. 125437, 2020, doi: 10.1016/j.surfcoat.2020.125437

[18] K. M. Li, K. J. Song, J. Guan, F. Yang, J. Liu, “Tribocorrosion behavior of a Ti6Al4V alloy electromagnetic induction nitride layer in a fluorine-containing solution,” Surf. Coatings Technol., vol. 386, no. January, pp. 1–15, 2020, doi: 10.1016/j.surfcoat.2020.125506

[19] F. Mindivan, M. P. Yildirim, F. Bayindir, H. Mindivan, “Corrosion and tribocorrosion behavior of cast and machine milled Co-Cr alloys for biomedical applications,” Acta Phys. Pol. A, vol. 129, no. 4, pp. 701–704, 2016, doi: 10.12693/APhysPolA.129.701

[20] E. Haruman, Y. Sun, M. S. Adenan, “A comparative study of the tribocorrosion behaviour of low temperature nitrided austenitic and duplex stainless steels in NaCl solution,” Tribol. Int., vol. 151, no. January, p. 106412, 2020, doi: 10.1016/j.triboint.2020.106412