Vol. 15 Núm. 2 (2016): Revista UIS Ingenierías
Artículos

Metodología para el registro de parámetros de calidad de energía en microrredes Inteligentes

Luis Eduardo Perdomo Orjuela
Universidad Distrital Francisco José de Caldas
Andrés Alfonso Rodríguez
Universidad Distrital Francisco José de Caldas
Francisco Santamaría
Universidad Distrital Francisco José de Caldas
Portada RUI 15.2

Publicado 2016-06-16

Palabras clave

  • ingeniería electrónica,
  • microrred,
  • internet de las cosas,
  • compatibilidad electromagnética,
  • circuito impreso,
  • calidad de potencia
  • ...Más
    Menos

Cómo citar

Perdomo Orjuela, L. E., Alfonso Rodríguez, A., & Santamaría, F. (2016). Metodología para el registro de parámetros de calidad de energía en microrredes Inteligentes. Revista UIS Ingenierías, 15(2), 117–123. https://doi.org/10.18273/revuin.v15n2-2016010

Resumen

El registro de parámetros de calidad de energía en microrredes inteligentes es una necesidad, por lo tanto es necesario disponer de dispositivos que permiten la adquisición, el procesamiento y el análisis de estos parámetros. En este artículo se presenta una metodología para la adquisición y procesamiento de la información, las estrategias de telecomunicaciones utilizadas y los criterios de compatibilidad electromagnética para el diseño del circuito impreso. Esta metodología permite obtener un dispositivo con alta fiabilidad y bajo costo, en términos de producción y operación. Además, al tener múltiples registradores conectados a una red de tensión inferior a 1 kV, es posible inferir algunas características del origen de los disturbios registrados.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. C. Trujillo, F. Santamaria, J. Hernández, A. Jaramillo, E. Gaona, E. Rivas, O. Flórez, D. Rodríguez, J. Alarcón, and H. Rojas, Microrredes eléctricas, Primera. Bogotá: Universidad Distrital Francisco José de Caldas, 2016.
  2. H. Minxiao, S. Xiaoling, L. Shaobo, and Z. Zhengkui, “Transient analysis and control for microgrid stability controller,” in 2013 IEEE Grenoble Conference, 2013, pp. 1–6.
  3. H.-L. Hsiang-Lin Huang, Y.-D. Yih-Der Lee, and Y.-R. Yung-Ruei Chang, “Improvement of transient response to islanding control of microgrid with bidirectional inverter,” in 2015 International Conference on Renewable Energy Research and Applications (ICRERA), 2015, pp. 184–188.
  4. W. Wei Deng, W. Wei Pei, and Z. Zhiping Qi, “Impact and improvement of Distributed Generation on voltage quality in Micro-grid,” in 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008, pp. 1737–1741.
  5. M. Begovic, Ed., Electrical Transmission Systems and Smart Grids: Selected Entries from the Encyclopedia of Sustainability Science and Technology. New York: Springer Science & Business Media, 2012.
  6. F. Bouhafs, M. Mackay, and M. Merabti, Communication Challenges and Solutions in the Smart Grid. New York: Springer, 2014.
  7. Z. M. Fadlullah and N. Kato, Evolution of Smart Grids, vol. 13. New York: Springer Science & Business Media, 2015.
  8. B. M. Buchholz and Z. Styczynski, Smart Grids – Fundamentals and Technologies in Electricity Networks. New York: Springer Science & Business Media, 2014.
  9. T. Jiang, L. Yu, and Y. Cao, Energy Management of Internet Data Centers in Smart Grid. New York: Springer, 2015.
  10. K. C. Budka, J. G. Deshpande, and M. Thottan, Communication Networks for Smart Grids: Making Smart Grid Real. New York: Springer Science & Business Media, 2014.
  11. A. Keyhani and M. Marwali, Eds., Smart Power Grids 2011. New York: Springer Science & Business Media, 2012.
  12. CIGRE WG 37.28, Quality of Supply Customers Requirements, no. June. Folsom: International Council on Large Electric Systems, 2001.
  13. CIGRE WG C4.07, Power Quality Indices and Objectives, no. January. Folsom: International Council on Large Electric Systems, 2005.
  14. CIGRE JWG C4.107, Economic Framework for Voltage Quality, no. June. Folsom: International Council on Large Electric Systems, 2011.
  15. M. Hamzeh, H. Karimi, and H. Mokhtari, “Harmonic and Negative-Sequence Current Control in an Islanded Multi-Bus MV Microgrid,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 167–176, Jan. 2014.
  16. G. W. Chang, H. J. Su, L. Y. Hsu, H. J. Lu, Y. R. Chang, Y. D. Lee, and C. C. Wu, “A study of passive harmonic filter planning for an AC microgrid,” in 2015 IEEE Power & Energy Society General Meeting, 2015, pp. 1–4.
  17. CIGRE WG C4.301, Use of Surge Arresters for Lightning Protection of Transmission Lines, no. 253. Folsom: International Council on Large Electric Systems, 2010.
  18. CIGRE WG01 SC33, Guide to procedures for estimating the lightning performance of transmission lines, vol. 01, no. October. Folsom: International Council on Large Electric Systems, 1991.
  19. CIGRE TF 33.01.03, Lightning Exposure of Structures and Interception Efficiency of Air Terminals, no. October. Folsom: International Council on Large Electric Systems, 1997.
  20. CIGRE WG 33.01.02, Characterization of Lightning for Applications in Electric Power Systems, no. December. Folsom: International Council on Large Electric Systems, 2000.
  21. CIGRE WG C4.4.02, Protection of MV and LV networks against lightning. Part I: Common Topics, no. 438 pt 1/2. Folsom: International Council on Large Electric Systems, 1997.
  22. CIGRE WG C4.404, Cloud to gound lightning parameters derived from lightning location systems, no. April. Folsom: International Council on Large Electric Systems, 2009.
  23. CIGRE WG C.4.402, Protection of Medium Voltage and Low Voltage Networks Against Lightning Part 2: Lightning protection of Medium Voltage Networks, no. December. Folsom: International Council on Large Electric Systems, 2010.
  24. CIGRE WG C4.408, Lightning Protection of Low Voltages Networks, no. August. Folsom: International Council on Large Electric Systems, 2013.
  25. CIGRE TF 33.01.02, Lightning Characteristics Relevant for Electrical Engineering: Assement of Sensing, Recording and Mapping Requirements in the Light of Present Technological Advancements. Folsom: International Council on Large Electric Systems, 1995.
  26. Z. Zhili Lei, X. Xin Ai, and M. Mingyong Cui, “Coordinated control strategy based on network parameters for voltage sags compensating in Microgrid,” in 2010 5th International Conference on Critical Infrastructure (CRIS), 2010, pp. 1–5.
  27. IEC, IEC 61000-4-30 Electromagnetic compatibility (EMC) – Part 4-30: Testing and measurement techniques – Power quality measurement methods. Geneva: International Electrotechnical Commission, 2000.
  28. IEEE Power Engineering Society, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Std 519 - 1992, vol. 1992, no. June. New York: Institute of Electrical and Electronics Engineers, 1992.
  29. R. Transit, V. Interface, S. Committee, I. Vehicular, and T. Society, IEEE Recommended practice on Surge Voltages in Low-Voltage AC Power Circuits, IEEE C62.41.2-1991, vol. 2004, no. February. New York, 2005.
  30. A. Alfonso, L. Perdomo, F. Santamaria, and G. Carlos, “Transient surges analysis in low voltage networks,” Rev. Tecnura, vol. 18, no. Edición especial doctorado, pp. 41–50, 2014.
  31. IEEE Power & Energy Society, IEEE Std 1159 - IEEE Recommended Practice for Monitoring Electric Power Quality., vol. 2009, no. June. New York: Institute of Electrical and Electronics Engineers, 2009.
  32. J. Balcells, F. Daura, R. Esparza, and R. Pallás, Interferencias electromagnéticas en sistemas electrónicos. Ciudad de México: Alfaomega S.A, 1992.
  33. C. Bowick, RF Circuit Design. Indianapolis: Newnes, 1982.
  34. S. Celozzi, R. Araneo, and G. Lovat, Electromagnetic shielding. New Jersey: John Wiley & Sons, 2008.
  35. M. Davidovitz, “Calculation of multiconductor microstrip line capacitances using the semidiscrete finite element method,” IEEE Microw. Guid. Wave Lett., vol. 1, no. 1, pp. 5–7, Jan. 1991.
  36. DelingerEdgar, “A Frequency Dependent Solution for Microstrip Transmission Lines,” IEEE Trans. Microw. Theory Tech., vol. 19, pp. 30–39, 1971.
  37. E. J. Denlinger, “A Frequency Dependent Solution for Microstrip Transmission Lines,” IEEE Trans. Microw. Theory Tech., vol. 19, no. 1, pp. 30–39, Jan. 1971.
  38. K.-H. Gonschorek and R. Vick, Electromagnetic Compatibility for Device Design and System Integration. Heidelberg: Springer Science & Business Media, 2009.
  39. T. Laurila, V. Vuorinen, M. Paulasto-Kröckel, M. Turunen, T. T. Mattila, and J. Kivilahti, Interfacial Compatibility in Microelectronics: Moving Away from the Trial and Error Approach. London: Springer Science & Business Media, 2012.
  40. R. Ludwig and G. Bogdanov, RF Circuit Design: Theory and Applications, London. New York: Prentice Hall, 2009.
  41. R. Mittra and T. Itoh, “A New Technique for the Analysis of the Dispersion Characteristics of Microstrip Lines,” IEEE Trans. Microw. Theory Tech., vol. 19, no. 1, pp. 47–56, Jan. 1971.
  42. M. I. Montrose, EMC and the Printed Circuit Board: Design, Theory, and Layout Made Simple. New York: John Wiley & Sons, 2004.
  43. M. I. Montrose, Printed Circuit Board Design Techniques for EMC Compliance: A Handbook for Designers, Second edi. New York: John Wiley & Sons, 2000.
  44. D. Morgan, A Handbook for EMC Testing and Measurement. London: The Institution of Engineering and Technology, 1994.
  45. A. M. Niknejad, Electromagnetics for High-Speed Analog and Digital Communication Circuits. Cambridge: Cambridge University Press, 2007.
  46. M. O’Hara, EMC at Component and PCB Level. Oxford: Newnes, 1998.
  47. H. W. Ott, Electromagnetic Compatibility Engineering. New Jersey: John Wiley & Sons, 2011.
  48. J.-M. Redouté and M. Steyaert, EMC of Analog Integrated Circuits. Dordrecht: Springer Science & Business Media, 2009.
  49. H. E. Stinehelfer, “An Accurate Calculation of Uniform Microstrip Transmission Lines,” IEEE J. Solid-State Circuits, vol. 3, no. 2, pp. 101–106, Jun. 1968.
  50. V. Teppati, A. Ferrero, and M. Sayed, Eds., Modern RF and Microwave Measurement Techniques. Cambridge: Cambridge University Press, 2013.