Comportamiento físico-mecánico del hormigón adicionando residuos de acero: una revisión literaria
Publicado 2021-11-22
Palabras clave
- acero,
- agregados,
- cemento,
- contaminación,
- construcción
- escoria,
- fibra,
- hormigón,
- limadura,
- propiedades físico mecánicas,
- residuos,
- viruta ...Más
Cómo citar
Derechos de autor 2021 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
En la actualidad, el interés por usar materiales de desecho y subproductos provenientes del hormigón ha incrementado, debido a la necesidad de minimizar la contaminación en el planeta. El presente documento tiene como objetivo la revisión sistemática de la literatura con respecto a la implementación de los residuos de acero en la mezcla de hormigón, y cómo esto influye en su comportamiento físico-mecánico. Se ha enfocado el interés principalmente en los residuos de acero en forma de escoria, limadura, viruta y fibras, incorporados en todo tipo de hormigón estructural, utilizado en columnas, vigas, zapatas, losas y muros. El uso de estos materiales tiene un alto impacto, pues no solo ayuda a reducir el costo de fabricación de cemento y hormigón, sino que a la vez otorga numerosos beneficios ecológicos, como reducir el costo de los vertederos, ahorrar energía y proteger el medio ambiente de una posible contaminación. Se efectuó la búsqueda de artículos indexados en las diversas bases de datos, tales como ASCE, EBSCO, Google Scholar, ScienceDirect, Scopus y SpringerOpen; se seleccionó finalmente un total de 60 artículos publicados desde el año 2014. Se concluye que el uso de residuos de acero es una alternativa para incorporar a la mezcla de hormigón, pues puede reemplazar parcial o totalmente al agregado y lograr la producción de hormigones que no presenten afección en sus propiedades físico-mecánicas; e incluso, en algunos casos, mejorar dichas características.
Descargas
Referencias
- K. Abhiram, P. Saravanakumar, “Properties of Recycled Aggregate Concrete Containing Hydrochloric Acid Treated Recycled Aggregates”, International Journal of ChemTech Research, vol. 8, no. 1, pp. 72-78, 2015.
- R. Purushothaman, R. R. Amirthavalli, L. Karan, “Influence of treatment methods on the strength and performance characteristics of recycled aggregate concrete”, Journal of Materials in Civil Engineering, vol. 27, no. 5, pp. 04014168, 2015, doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001128
- H. T. Le, S. T. Nguyen, “A study on high performance fine-grained concrete containing rice husk ash”, International Journal of Concrete Structures and Materials, vol. 8, no. 4, pp. 301-307, 2014, doi: https://doi.org/10.1007/s40069-014-0078-z.
- D. Y. Yoo, S. T. Kang, Y. S. Yoon, “Enhancing the flexural performance of ultra-high-performance concrete using long steel fibers”, Composite Structures, vol. 147, pp. 220-230, 2016, doi: https://doi.org/10.1016/j.compstruct.2016.03.032.
- Y. Zhao, B. Xu, J. Chang, “Addition of pre‐wetted lightweight aggregate and steel-polypropylene fibers in high‐performance concrete to mitigate autogenous shrinkage”, Structural Concrete, vol. 21, no. 3, pp. 1134-1143, 2019, doi: https://doi.org/10.1002/suco.201900280.
- M. Mastali, A. Dalvand, “Fresh and hardened properties of self-compacting concrete reinforced with hybrid ecycled steel–polypropylene fiber”, Journal of Materials in Civil Engineering, vol. 29, no. 6, 2017, doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001851
- Z. Keshavarz y D. Mostofinejad, “Steel chip and porcelain ceramic wastes used as replacements for coarse aggregates in concrete”, Journal of Cleaner Production, vol. 230, pp. 339-351, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.05.010.
- “Fact Sheet: Steel industry by-products,” Worldsteel Association, Bélgica, 2016. [En línea]. Disponible en: https://www.worldsteel.org/
- K. Peters, E. Malfa, V. Colla, “The european steel technology platform's strategic research agenda: a further step for the steel as backbone of EU resource and energy intense industry sustainability”, La Metallurgia Italiana, vol. 5, pp. 5-17, 2019.
- M. Rubio-Cintas, S. Barnett, F. Pérez-García, M. Parrón-Rubio, “Mechanical-strength characteristics of concrete made with stainless steel industry wastes as binders”, Construction and Building Materials, vol. 204, pp. 675-683, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.01.166.
- Unión de Empresas Siderúrgicas, “Industria siderúrgica española: anuario estadístico 2019”, 2020, [En línea]. Disponible en: https://unesid.org/docs/2020-09-anuario-siderurgico.pdf
- J. Rosales, F. Agrela, J. A. Entrenas, M. Cabrera, “Potential of Stainless Steel Slag Waste in Manufacturing Self-Compacting Concrete”, Materials, vol. 13, no. 9, pp. 1-17, 2020, doi: https://doi.org/10.3390/ma13092049.
- I. Padmanaban, S. Nithila, K. R. Jahaan, “Replacement of fine aggregate by using construction demolition waste steel powder in concrete”, Materials Today: Proceedings, vol. 23, no. 2, pp. 1551-1556, 2020, doi: https://doi.org/10.1016/j.matpr.2020.02.318.
- Y. W. Shewalul, “Experimental study of the effect of waste steel scrap as reinforcing material on the mechanical properties of concrete”, Case Studies in Construction Materials, vol. 14, pp. 1-9, 2021, doi: https://doi.org/10.1016/j.cscm.2021.e00490.
- G. Blasini et al., Precast tunnel segments in fibre-reinforced concrete. The International Federation for Structural Concrete, 2017, doi: https://doi.org/10.35789/fib.BULL.0083.
- T. A. El-Sayed, “Flexural behavior of RC beams containing recycled industrial wastes as steel fibers”, Construction and Building Materials, vol. 212, pp. 27-38, 2019.
- M. K. Ismail, A. A. A. Hassan, “An experimental study on flexural behaviour of large-scale concrete beams incorporating crumb rubber and steel fibres”, Engineering Structures, vol. 145, pp. 97-108, 2017, doi: https://doi.org/10.1016/j.engstruct.2017.05.018.
- O. Sengul, “Mechanical behavior of concretes containing waste steel fibers recovered from scrap tires”, Construction and Building Materials, vol. 122, pp. 649-658, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.06.113.
- X. Xun, Z. Ronghua, y L. Yinghu, “Influence of curing regime on properties of reactive powder concrete containing waste steel fibers”, Construction and Building Materials, vol. 232, pp. 1-15, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.117129.
- Satyaprakash, P. Helmand, S. Saini, “Mechanical properties of concrete in presence of Iron filings as complete replacement of fine aggregates”, Materials Today: Proceedings, vol. 15, no. 3, pp. 536-545, 2019, doi: https://doi.org/10.1016/j.matpr.2019.04.118.
- A. Anand, G. M. Abraham, J. George, “Review Paper on Reactive Powder Concrete”, International journal for research in emerging science and technology, vol. 3, no. 12, pp. 15-21, 2016.
- A. N. Alzaed, “Effect of Iron Filings in Concrete Compression and Tensile Strength”, International Journal of Recent Develpment in Engineering and Technology, vol. 3, no. 4, pp. 121-125, 2014.
- B. Venkatesan, M. Venuga, P. R. Dhevasenaa, V. Kannan, “Experimental study on concrete using partial replacement of cement by Alccofine fine aggregate as iron powder”, Materials Today: Proceedings, vol. 37, no. 2, pp. 2183-2188, 2021, doi: https://doi.org/10.1016/j.matpr.2020.07.648.
- A. L. Mhawi, A. O. Dawood, “Experimental investigation of some properties of square concrete-filled steel tubular columns containing iron filings as replacement of sand”, Materials Science and Engineering, vol. 888, no. 1, pp. 012045, 2020.
- J. Y. Zhu, T. M. Chan, “Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression”, Journal of Constructional Steel Research, vol. 147, pp. 457-467, 2018, doi: https://doi.org/10.1016/j.jcsr.2018.04.030.
- F. A. Olutoge, M. A. Onugba, A. Ocholi, “Strength Properties of Concrete Produced With Iron Filings as Sand Replacement”, British Journal of Applied Science & Technology, vol. 18, no. 3, pp. 1-6, 2016.
- M. N. H. AL-Hashimi, W. A. Najim, A. M. Hameed, “Performance of Concrete Containing Iron Fillings”, Journal of University of Babylon for Engineering Sciences, vol. 26, no. 6, pp, 384-392, 2018.
- M. O. Yusuf, “Synergistic-effect of iron-filing and silica-fume on the absorption and shrinkage of cement paste”, Magazine of Civil Engineering, vol. 91, no. 7, pp. 16-26, 2019.
- V. S. Devi, M. M. Kumar, N. Iswarya, B. K. Gnanavel, “Durability of Steel Slag Concrete under Various Exposure Conditions”, Materialstoday: Proceedings, vol. 22, no. 4, pp. 2764-2771, 2020, doi: https://doi.org/10.1016/j.matpr.2020.03.407.
- X. Yu, Z. Tao, T. Y. Song, y Z. Pan, “Performance of concrete made with steel slag and waste glass”, Construction and Building Materials, vol. 114, pp. 737-746, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.03.217.
- Y. Jiang, T. C. Ling, C. Shi, y S. Y. Pan, “Characteristics of steel slags and their use in cement and concrete—A review”, Resources, Conservation and Recycling, vol. 136, pp. 187-197, 2018, doi: https://doi.org/10.1016/j.resconrec.2018.04.023.
- L. Gan, H. F. Wang, X. P. Li, Y. H. Qi, C. X. Zhang, “Strength Activity Index of Air Quenched Basic Oxygen Furnace Steel Slag”, Journal of Iron and Steel Research International, vol. 22, no. 3, pp. 219-225, 2015, doi: https://doi.org/10.1016/S1006-706X(15)60033-4.
- N. H. Roslan, M. Ismail, N. H. A. Khalid, B. Muhammad, “Properties of concrete containing electric arc furnace steel slag and steel sludge”, Journal of Building Engineering, vol. 28, pp. 101060, 2020, doi: https://doi.org/10.1016/j.jobe.2019.101060.
- S. S. G. Hashemi, H. B. Mahmud, T. C. Ghuan, A. B. Chin, C. Kuenzel, N. Ranjbar, “Safe disposal of coal bottom ash by solidification and stabilization techniques”, Construction and Building Materials, vol. 197, pp. 705-715, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2018.11.123.
- A. S. Brand, J. R. Roesler, “Steel furnace slag aggregate expansion and hardened concrete properties”, Cement and Concrete Composites, vol. 60, pp. 1-9, 2015, doi: https://doi.org/10.1016/j.cemconcomp.2015.04.006.
- I. Santamaría Vicario, Á. Rodríguez, C. Junco, S. Gutiérrez González, V. Calderón, “Durability behavior of steelmaking slag masonry mortars”, Materials & Design, vol. 97, pp. 307-315, 5 Mayo 2016, doi: https://doi.org/10.1016/j.matdes.2016.02.080.
- B. Lee, G. Kim, J. Nam, B. Cho, Y. Hama, R. Kim, “Compressive strength, resistance to chloride-ion penetration and freezing/thawing of slag-replaced concrete and cementless slag concrete containing desulfurization slag activator”, Construction and Building Materials, vol. 128, pp. 341-348, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.10.075.
- I. Arribas, I. Vegas, J. San-José, J. M. Manso, “Durability studies on steelmaking slag concretes”, Materials & Design, vol. 63, pp. 168-176, 2014, doi: https://doi.org/10.1016/j.matdes.2014.06.002.
- N. H. Roslan, M. Ismail, Z. Abdul-Majid, S. Ghoreishiamiri, B. Muhammad, “Performance of steel slag and steel sludge in concrete”, Construction and Building Materials, vol. 104, pp. 16-24, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2015.12.008.
- S. Saxena, A. Tembhurkar, “Impact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete”, Construction and Building Materials, vol. 165, pp. 126-137, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.01.030.
- E. R. Noufal, A. K. Kasthurba, J. Sudhakumar, U. Manju, “Assessment of concrete properties with iron slag as a fine aggregate replacement”, Advances in Concrete Construction, vol. 9, no. 6, pp. 589-596, 2020, doi: https://doi.org/10.12989/acc.2020.9.6.589.
- J. T. Kolawole, A. J. Babafemi, S. C. Paul, A. Plessis, “Performance of concrete containing Nigerian electric arc furnace steel slag aggregate towards sustainable production”, Sustainable Materials and Technologies, vol. 25, pp. e00174, 2020, doi: https://doi.org/10.1016/j.susmat.2020.e00174.
- S. K. Singh, Jyoti, P. Vashistha, “Development of newer composite cement through mechano-chemical activation of steel slag”, Construction and Building Materials, vol. 268, pp. 121147, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2020.121147.
- Y. Ida, S. Hong, S. Kimura, Y. Sato, Y. Kaneko, “Prediction of Drying Shrinkage Cracks of Steel Chip Reinforced Polymer Cement Mortar”, Journal of Advanced Concrete Technology, vol. 14, pp. 739-752, 2016, doi: https://doi.org/10.3151/jact.14.739.
- Y. S. Ahmed, J. M. Paiva, S. C. Veldhuis, “Characterization and prediction of chip formation dynamics in machining austenitic stainless steel through supply of a high-pressure coolant”, The International Journal of Advanced Manufacturing Technology, vol. 102, pp. 1671-1688, 2019, doi: https://doi.org/10.1007/s00170-018-03277-7.
- M. Mia, N. R. Dhar, “Effects of duplex jets high-pressure coolant on machining temperature and machinability of Ti-6Al-4V superalloy”, Journal of Materials Processing Technology, vol. 252, pp. 688-696, 2018, doi: https://doi.org/10.1016/j.jmatprotec.2017.10.040.
- C. Mendonça, P. Capellato, E. Bayraktar, F. Gatamorta, J. Gomes, A. Oliveira, D. Sachs, M. Melo, G. Silva, “Recycling Chips of Stainless Steel Using a Full Factorial Design”, Metals, vol. 9, no. 8, pp. 842, 2019, doi: https://doi.org/10.3390/met9080842.
- S. Djebali, Y. Bouafia, S. Larbi, A. Bilek, “Mechanical Behavior of Steel-Chips-Reinforced Concrete”, Key Engineering Materials, vol. 592-593, pp. 672-675, 2014, doi: https://doi.org/10.4028/www.scientific.net/KEM.592-593.672.
- D. A. S. Rambo, F. de Andrade Silva, R. D. Toledo Filho, “Mechanical behavior of hybrid steel-fiber self-consolidating concrete: Materials and structural aspects”, Materials and Design, vol. 54, pp. 32-42, 2014, doi: https://doi.org/10.1016/j.matdes.2013.08.014.
- I. Abavisani, O. Rezaifar, A. Kheyroddin, “Alternating Magnetic Field Effect on Fine-Aggregate Steel Chip-Reinforced Concrete Properties”, Journal of Materials in Civil Engineering, vol. 30, no. 6, pp. 040180871-040180879, 2018.
- D. Atlaoui, Y. Bouafia, “Experimental characterization of concrete beams elements reinforced by long fiber chips”, Journal of Adhesion Science and Technology, vol. 31, no. 8, pp. 844-857 2016, doi: https://doi.org/10.1080/01694243.2016.1233620.
- M. Alwaeli, “The implementation of scale and steel chips waste as a replacement for raw sand in concrete manufacturing”, Journal of Cleaner Production, vol. 137, pp. 1038-1044, 2016, doi: https://doi.org/10.1016/j.jclepro.2016.07.211.
- A. Khaloo, E. M. Raisi, P. Hosseini, H. Tahsiri, “Mechanical performance of self-compacting concrete reinforced with steel fibers”, Construction and Building Materials, vol. 51, pp. 179-186, 2014, doi: https://doi.org/10.1016/j.conbuildmat.2013.10.054.
- K. R. Akça, Ö. Çakır, M. Ipek, “Properties of polypropylene fiber reinforced concrete using recycled aggregates”, Construction and Building Materials, vol. 98, pp. 620-630, 2015, doi: https://doi.org/10.1016/j.conbuildmat.2015.08.133.
- H. Xia, W. Wang, Z. Shi, “Mechanical properties of reactive powder concrete with ultra-short brass-coated steel fibres”, Magazine of Concrete Research., vol. 67, no. 6, pp. 308-316, 2015, doi: https://doi.org/10.1680/macr.14.00184.
- G. Pachideh, M. Gholhaki, “An experimental study on the performance of fine-grained concrete incorporating recycled steel spring exposed to acidic conditions”, Advances in Structural Engineering, vol. 23, no. 11, pp. 2458-2470, 2020, doi: https://doi.org/10.1177/1369433220915794.
- R. Yu, P. Spiesz, H. Brouwers, “Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): Experiments and modeling”, Construction and Building Materials, vol. 68, pp. 158-171, 2014, doi: https://doi.org/10.1016/j.conbuildmat.2014.06.033.
- S. Hesami, I. S. Hikouei, S. A. A. Emadi, “Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber”, Journal of Cleaner Production, vol. 133, pp. 228-234, 2016, doi: https://doi.org/10.1016/j.jclepro.2016.04.079.
- Y. Ye, J. Liu, Z. Zhang, Z. Wang, Q. Peng, “Experimental Study of High-Strength Steel Fiber Lightweight Aggregate Concrete on Mechanical Properties and Toughness Index”, Advances in Materials Science and Engineering, vol. 2020, 2020, doi: https://doi.org/10.1155/2020/5915034.
- G. Pachideh, M. Gholhaki, “An experimental into effect of temperature rise on mechanical and visual characteristics of concrete containing recycled metal spring”, Structural Concrete, vol. 22, no. 1, pp. 550-565, 2021, doi: https://doi.org/10.1002/suco.201900274.
- F. Aslani, L. Hou, S. Nejadi, J. Sun, S. Abbasi, “Experimental analysis of fiber-reinforced recycled aggregate self-compacting concrete using waste recycled concrete aggregates, polypropylene, and steel fibers”, Structural Concrete, vol. 20, no. 5, pp. 1670-1683, 2019, doi: https://doi.org/10.1002/suco.201800336.