Vol. 21 Núm. 1 (2022): Revista UIS Ingenierías
Artículos

Comportamiento físico-mecánico del hormigón adicionando residuos de acero: una revisión literaria

Socrates Pedro Muñoz-Pérez
Universidad Señor de Sipan
Antonny Luis Cabrera-Alcántara
Universidad Señor de Sipan
Carlos César Delgado- Bravo
Universidad Señor de Sipan
Paula Alejandra Renilla-Lau
Universidad Señor de Sipan

Publicado 2021-11-22

Palabras clave

  • acero,
  • agregados,
  • cemento,
  • contaminación,
  • construcción,
  • escoria,
  • fibra,
  • hormigón,
  • limadura,
  • propiedades físico mecánicas,
  • residuos,
  • viruta
  • ...Más
    Menos

Cómo citar

Muñoz-Pérez, S. P., Cabrera-Alcántara, A. L., Delgado- Bravo, C. C., & Renilla-Lau, P. A. (2021). Comportamiento físico-mecánico del hormigón adicionando residuos de acero: una revisión literaria. Revista UIS Ingenierías, 21(1), 57–72. https://doi.org/10.18273/revuin.v21n1-2022005

Resumen

En la actualidad, el interés por usar materiales de desecho y subproductos provenientes del hormigón ha incrementado, debido a la necesidad de minimizar la contaminación en el planeta. El presente documento tiene como objetivo la revisión sistemática de la literatura con respecto a la implementación de los residuos de acero en la mezcla de hormigón, y cómo esto influye en su comportamiento físico-mecánico. Se ha enfocado el interés principalmente en los residuos de acero en forma de escoria, limadura, viruta y fibras, incorporados en todo tipo de hormigón estructural, utilizado en columnas, vigas, zapatas, losas y muros. El uso de estos materiales tiene un alto impacto, pues no solo ayuda a reducir el costo de fabricación de cemento y hormigón, sino que a la vez otorga numerosos beneficios ecológicos, como reducir el costo de los vertederos, ahorrar energía y proteger el medio ambiente de una posible contaminación. Se efectuó la búsqueda de artículos indexados en las diversas bases de datos, tales como ASCE, EBSCO, Google Scholar, ScienceDirect, Scopus y SpringerOpen; se seleccionó finalmente un total de 60 artículos publicados desde el año 2014. Se concluye que el uso de residuos de acero es una alternativa para incorporar a la mezcla de hormigón, pues puede reemplazar parcial o totalmente al agregado y lograr la producción de hormigones que no presenten afección en sus propiedades físico-mecánicas; e incluso, en algunos casos, mejorar dichas características.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. K. Abhiram, P. Saravanakumar, “Properties of Recycled Aggregate Concrete Containing Hydrochloric Acid Treated Recycled Aggregates”, International Journal of ChemTech Research, vol. 8, no. 1, pp. 72-78, 2015.
  2. R. Purushothaman, R. R. Amirthavalli, L. Karan, “Influence of treatment methods on the strength and performance characteristics of recycled aggregate concrete”, Journal of Materials in Civil Engineering, vol. 27, no. 5, pp. 04014168, 2015, doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001128
  3. H. T. Le, S. T. Nguyen, “A study on high performance fine-grained concrete containing rice husk ash”, International Journal of Concrete Structures and Materials, vol. 8, no. 4, pp. 301-307, 2014, doi: https://doi.org/10.1007/s40069-014-0078-z.
  4. D. Y. Yoo, S. T. Kang, Y. S. Yoon, “Enhancing the flexural performance of ultra-high-performance concrete using long steel fibers”, Composite Structures, vol. 147, pp. 220-230, 2016, doi: https://doi.org/10.1016/j.compstruct.2016.03.032.
  5. Y. Zhao, B. Xu, J. Chang, “Addition of pre‐wetted lightweight aggregate and steel-polypropylene fibers in high‐performance concrete to mitigate autogenous shrinkage”, Structural Concrete, vol. 21, no. 3, pp. 1134-1143, 2019, doi: https://doi.org/10.1002/suco.201900280.
  6. M. Mastali, A. Dalvand, “Fresh and hardened properties of self-compacting concrete reinforced with hybrid ecycled steel–polypropylene fiber”, Journal of Materials in Civil Engineering, vol. 29, no. 6, 2017, doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001851
  7. Z. Keshavarz y D. Mostofinejad, “Steel chip and porcelain ceramic wastes used as replacements for coarse aggregates in concrete”, Journal of Cleaner Production, vol. 230, pp. 339-351, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.05.010.
  8. “Fact Sheet: Steel industry by-products,” Worldsteel Association, Bélgica, 2016. [En línea]. Disponible en: https://www.worldsteel.org/
  9. K. Peters, E. Malfa, V. Colla, “The european steel technology platform's strategic research agenda: a further step for the steel as backbone of EU resource and energy intense industry sustainability”, La Metallurgia Italiana, vol. 5, pp. 5-17, 2019.
  10. M. Rubio-Cintas, S. Barnett, F. Pérez-García, M. Parrón-Rubio, “Mechanical-strength characteristics of concrete made with stainless steel industry wastes as binders”, Construction and Building Materials, vol. 204, pp. 675-683, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.01.166.
  11. Unión de Empresas Siderúrgicas, “Industria siderúrgica española: anuario estadístico 2019”, 2020, [En línea]. Disponible en: https://unesid.org/docs/2020-09-anuario-siderurgico.pdf
  12. J. Rosales, F. Agrela, J. A. Entrenas, M. Cabrera, “Potential of Stainless Steel Slag Waste in Manufacturing Self-Compacting Concrete”, Materials, vol. 13, no. 9, pp. 1-17, 2020, doi: https://doi.org/10.3390/ma13092049.
  13. I. Padmanaban, S. Nithila, K. R. Jahaan, “Replacement of fine aggregate by using construction demolition waste steel powder in concrete”, Materials Today: Proceedings, vol. 23, no. 2, pp. 1551-1556, 2020, doi: https://doi.org/10.1016/j.matpr.2020.02.318.
  14. Y. W. Shewalul, “Experimental study of the effect of waste steel scrap as reinforcing material on the mechanical properties of concrete”, Case Studies in Construction Materials, vol. 14, pp. 1-9, 2021, doi: https://doi.org/10.1016/j.cscm.2021.e00490.
  15. G. Blasini et al., Precast tunnel segments in fibre-reinforced concrete. The International Federation for Structural Concrete, 2017, doi: https://doi.org/10.35789/fib.BULL.0083.
  16. T. A. El-Sayed, “Flexural behavior of RC beams containing recycled industrial wastes as steel fibers”, Construction and Building Materials, vol. 212, pp. 27-38, 2019.
  17. M. K. Ismail, A. A. A. Hassan, “An experimental study on flexural behaviour of large-scale concrete beams incorporating crumb rubber and steel fibres”, Engineering Structures, vol. 145, pp. 97-108, 2017, doi: https://doi.org/10.1016/j.engstruct.2017.05.018.
  18. O. Sengul, “Mechanical behavior of concretes containing waste steel fibers recovered from scrap tires”, Construction and Building Materials, vol. 122, pp. 649-658, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.06.113.
  19. X. Xun, Z. Ronghua, y L. Yinghu, “Influence of curing regime on properties of reactive powder concrete containing waste steel fibers”, Construction and Building Materials, vol. 232, pp. 1-15, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.117129.
  20. Satyaprakash, P. Helmand, S. Saini, “Mechanical properties of concrete in presence of Iron filings as complete replacement of fine aggregates”, Materials Today: Proceedings, vol. 15, no. 3, pp. 536-545, 2019, doi: https://doi.org/10.1016/j.matpr.2019.04.118.
  21. A. Anand, G. M. Abraham, J. George, “Review Paper on Reactive Powder Concrete”, International journal for research in emerging science and technology, vol. 3, no. 12, pp. 15-21, 2016.
  22. A. N. Alzaed, “Effect of Iron Filings in Concrete Compression and Tensile Strength”, International Journal of Recent Develpment in Engineering and Technology, vol. 3, no. 4, pp. 121-125, 2014.
  23. B. Venkatesan, M. Venuga, P. R. Dhevasenaa, V. Kannan, “Experimental study on concrete using partial replacement of cement by Alccofine fine aggregate as iron powder”, Materials Today: Proceedings, vol. 37, no. 2, pp. 2183-2188, 2021, doi: https://doi.org/10.1016/j.matpr.2020.07.648.
  24. A. L. Mhawi, A. O. Dawood, “Experimental investigation of some properties of square concrete-filled steel tubular columns containing iron filings as replacement of sand”, Materials Science and Engineering, vol. 888, no. 1, pp. 012045, 2020.
  25. J. Y. Zhu, T. M. Chan, “Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression”, Journal of Constructional Steel Research, vol. 147, pp. 457-467, 2018, doi: https://doi.org/10.1016/j.jcsr.2018.04.030.
  26. F. A. Olutoge, M. A. Onugba, A. Ocholi, “Strength Properties of Concrete Produced With Iron Filings as Sand Replacement”, British Journal of Applied Science & Technology, vol. 18, no. 3, pp. 1-6, 2016.
  27. M. N. H. AL-Hashimi, W. A. Najim, A. M. Hameed, “Performance of Concrete Containing Iron Fillings”, Journal of University of Babylon for Engineering Sciences, vol. 26, no. 6, pp, 384-392, 2018.
  28. M. O. Yusuf, “Synergistic-effect of iron-filing and silica-fume on the absorption and shrinkage of cement paste”, Magazine of Civil Engineering, vol. 91, no. 7, pp. 16-26, 2019.
  29. V. S. Devi, M. M. Kumar, N. Iswarya, B. K. Gnanavel, “Durability of Steel Slag Concrete under Various Exposure Conditions”, Materialstoday: Proceedings, vol. 22, no. 4, pp. 2764-2771, 2020, doi: https://doi.org/10.1016/j.matpr.2020.03.407.
  30. X. Yu, Z. Tao, T. Y. Song, y Z. Pan, “Performance of concrete made with steel slag and waste glass”, Construction and Building Materials, vol. 114, pp. 737-746, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.03.217.
  31. Y. Jiang, T. C. Ling, C. Shi, y S. Y. Pan, “Characteristics of steel slags and their use in cement and concrete—A review”, Resources, Conservation and Recycling, vol. 136, pp. 187-197, 2018, doi: https://doi.org/10.1016/j.resconrec.2018.04.023.
  32. L. Gan, H. F. Wang, X. P. Li, Y. H. Qi, C. X. Zhang, “Strength Activity Index of Air Quenched Basic Oxygen Furnace Steel Slag”, Journal of Iron and Steel Research International, vol. 22, no. 3, pp. 219-225, 2015, doi: https://doi.org/10.1016/S1006-706X(15)60033-4.
  33. N. H. Roslan, M. Ismail, N. H. A. Khalid, B. Muhammad, “Properties of concrete containing electric arc furnace steel slag and steel sludge”, Journal of Building Engineering, vol. 28, pp. 101060, 2020, doi: https://doi.org/10.1016/j.jobe.2019.101060.
  34. S. S. G. Hashemi, H. B. Mahmud, T. C. Ghuan, A. B. Chin, C. Kuenzel, N. Ranjbar, “Safe disposal of coal bottom ash by solidification and stabilization techniques”, Construction and Building Materials, vol. 197, pp. 705-715, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2018.11.123.
  35. A. S. Brand, J. R. Roesler, “Steel furnace slag aggregate expansion and hardened concrete properties”, Cement and Concrete Composites, vol. 60, pp. 1-9, 2015, doi: https://doi.org/10.1016/j.cemconcomp.2015.04.006.
  36. I. Santamaría Vicario, Á. Rodríguez, C. Junco, S. Gutiérrez González, V. Calderón, “Durability behavior of steelmaking slag masonry mortars”, Materials & Design, vol. 97, pp. 307-315, 5 Mayo 2016, doi: https://doi.org/10.1016/j.matdes.2016.02.080.
  37. B. Lee, G. Kim, J. Nam, B. Cho, Y. Hama, R. Kim, “Compressive strength, resistance to chloride-ion penetration and freezing/thawing of slag-replaced concrete and cementless slag concrete containing desulfurization slag activator”, Construction and Building Materials, vol. 128, pp. 341-348, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.10.075.
  38. I. Arribas, I. Vegas, J. San-José, J. M. Manso, “Durability studies on steelmaking slag concretes”, Materials & Design, vol. 63, pp. 168-176, 2014, doi: https://doi.org/10.1016/j.matdes.2014.06.002.
  39. N. H. Roslan, M. Ismail, Z. Abdul-Majid, S. Ghoreishiamiri, B. Muhammad, “Performance of steel slag and steel sludge in concrete”, Construction and Building Materials, vol. 104, pp. 16-24, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2015.12.008.
  40. S. Saxena, A. Tembhurkar, “Impact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete”, Construction and Building Materials, vol. 165, pp. 126-137, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.01.030.
  41. E. R. Noufal, A. K. Kasthurba, J. Sudhakumar, U. Manju, “Assessment of concrete properties with iron slag as a fine aggregate replacement”, Advances in Concrete Construction, vol. 9, no. 6, pp. 589-596, 2020, doi: https://doi.org/10.12989/acc.2020.9.6.589.
  42. J. T. Kolawole, A. J. Babafemi, S. C. Paul, A. Plessis, “Performance of concrete containing Nigerian electric arc furnace steel slag aggregate towards sustainable production”, Sustainable Materials and Technologies, vol. 25, pp. e00174, 2020, doi: https://doi.org/10.1016/j.susmat.2020.e00174.
  43. S. K. Singh, Jyoti, P. Vashistha, “Development of newer composite cement through mechano-chemical activation of steel slag”, Construction and Building Materials, vol. 268, pp. 121147, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2020.121147.
  44. Y. Ida, S. Hong, S. Kimura, Y. Sato, Y. Kaneko, “Prediction of Drying Shrinkage Cracks of Steel Chip Reinforced Polymer Cement Mortar”, Journal of Advanced Concrete Technology, vol. 14, pp. 739-752, 2016, doi: https://doi.org/10.3151/jact.14.739.
  45. Y. S. Ahmed, J. M. Paiva, S. C. Veldhuis, “Characterization and prediction of chip formation dynamics in machining austenitic stainless steel through supply of a high-pressure coolant”, The International Journal of Advanced Manufacturing Technology, vol. 102, pp. 1671-1688, 2019, doi: https://doi.org/10.1007/s00170-018-03277-7.
  46. M. Mia, N. R. Dhar, “Effects of duplex jets high-pressure coolant on machining temperature and machinability of Ti-6Al-4V superalloy”, Journal of Materials Processing Technology, vol. 252, pp. 688-696, 2018, doi: https://doi.org/10.1016/j.jmatprotec.2017.10.040.
  47. C. Mendonça, P. Capellato, E. Bayraktar, F. Gatamorta, J. Gomes, A. Oliveira, D. Sachs, M. Melo, G. Silva, “Recycling Chips of Stainless Steel Using a Full Factorial Design”, Metals, vol. 9, no. 8, pp. 842, 2019, doi: https://doi.org/10.3390/met9080842.
  48. S. Djebali, Y. Bouafia, S. Larbi, A. Bilek, “Mechanical Behavior of Steel-Chips-Reinforced Concrete”, Key Engineering Materials, vol. 592-593, pp. 672-675, 2014, doi: https://doi.org/10.4028/www.scientific.net/KEM.592-593.672.
  49. D. A. S. Rambo, F. de Andrade Silva, R. D. Toledo Filho, “Mechanical behavior of hybrid steel-fiber self-consolidating concrete: Materials and structural aspects”, Materials and Design, vol. 54, pp. 32-42, 2014, doi: https://doi.org/10.1016/j.matdes.2013.08.014.
  50. I. Abavisani, O. Rezaifar, A. Kheyroddin, “Alternating Magnetic Field Effect on Fine-Aggregate Steel Chip-Reinforced Concrete Properties”, Journal of Materials in Civil Engineering, vol. 30, no. 6, pp. 040180871-040180879, 2018.
  51. D. Atlaoui, Y. Bouafia, “Experimental characterization of concrete beams elements reinforced by long fiber chips”, Journal of Adhesion Science and Technology, vol. 31, no. 8, pp. 844-857 2016, doi: https://doi.org/10.1080/01694243.2016.1233620.
  52. M. Alwaeli, “The implementation of scale and steel chips waste as a replacement for raw sand in concrete manufacturing”, Journal of Cleaner Production, vol. 137, pp. 1038-1044, 2016, doi: https://doi.org/10.1016/j.jclepro.2016.07.211.
  53. A. Khaloo, E. M. Raisi, P. Hosseini, H. Tahsiri, “Mechanical performance of self-compacting concrete reinforced with steel fibers”, Construction and Building Materials, vol. 51, pp. 179-186, 2014, doi: https://doi.org/10.1016/j.conbuildmat.2013.10.054.
  54. K. R. Akça, Ö. Çakır, M. Ipek, “Properties of polypropylene fiber reinforced concrete using recycled aggregates”, Construction and Building Materials, vol. 98, pp. 620-630, 2015, doi: https://doi.org/10.1016/j.conbuildmat.2015.08.133.
  55. H. Xia, W. Wang, Z. Shi, “Mechanical properties of reactive powder concrete with ultra-short brass-coated steel fibres”, Magazine of Concrete Research., vol. 67, no. 6, pp. 308-316, 2015, doi: https://doi.org/10.1680/macr.14.00184.
  56. G. Pachideh, M. Gholhaki, “An experimental study on the performance of fine-grained concrete incorporating recycled steel spring exposed to acidic conditions”, Advances in Structural Engineering, vol. 23, no. 11, pp. 2458-2470, 2020, doi: https://doi.org/10.1177/1369433220915794.
  57. R. Yu, P. Spiesz, H. Brouwers, “Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC): Experiments and modeling”, Construction and Building Materials, vol. 68, pp. 158-171, 2014, doi: https://doi.org/10.1016/j.conbuildmat.2014.06.033.
  58. S. Hesami, I. S. Hikouei, S. A. A. Emadi, “Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber”, Journal of Cleaner Production, vol. 133, pp. 228-234, 2016, doi: https://doi.org/10.1016/j.jclepro.2016.04.079.
  59. Y. Ye, J. Liu, Z. Zhang, Z. Wang, Q. Peng, “Experimental Study of High-Strength Steel Fiber Lightweight Aggregate Concrete on Mechanical Properties and Toughness Index”, Advances in Materials Science and Engineering, vol. 2020, 2020, doi: https://doi.org/10.1155/2020/5915034.
  60. G. Pachideh, M. Gholhaki, “An experimental into effect of temperature rise on mechanical and visual characteristics of concrete containing recycled metal spring”, Structural Concrete, vol. 22, no. 1, pp. 550-565, 2021, doi: https://doi.org/10.1002/suco.201900274.
  61. F. Aslani, L. Hou, S. Nejadi, J. Sun, S. Abbasi, “Experimental analysis of fiber-reinforced recycled aggregate self-compacting concrete using waste recycled concrete aggregates, polypropylene, and steel fibers”, Structural Concrete, vol. 20, no. 5, pp. 1670-1683, 2019, doi: https://doi.org/10.1002/suco.201800336.