Vol. 21 Núm. 2 (2022): Revista UIS Ingenierías
Artículos

Influencia del contenido de fibra y del recocido sobre las propiedades térmicas de un material biocompuesto reforzado con fibras de bambú

Eudi Blanco-Sánchez
Universidad Central de Venezuela
Adolfo Madera-Mujica
Universidad Central de Venezuela
Marcial Pérez-Castillo
Universidad Central de Venezuela
Jorge Fajardo-Seminario
Universidad Politécnica Salesiana
Edwuin Carrasquero-Rodríguez
Universidad Estatal de Milagro
Luis López-López
Universidad Politécnica Salesiana
Luis Cruz-Riaño
Universidad Pontificia Bolivariana

Publicado 2022-03-23

Palabras clave

  • polipropileno,
  • fibras,
  • bambú,
  • biocompuesto,
  • grado de cristalinidad,
  • recocido,
  • calorimetría diferencial de barrido,
  • DSC,
  • temperatura de fusión,
  • temperatura de cristalización
  • ...Más
    Menos

Cómo citar

Blanco-Sánchez , E., Madera-Mujica , A., Pérez-Castillo , M., Fajardo-Seminario , J., Carrasquero-Rodríguez , E., López-López , L., & Cruz-Riaño , L. . (2022). Influencia del contenido de fibra y del recocido sobre las propiedades térmicas de un material biocompuesto reforzado con fibras de bambú. Revista UIS Ingenierías, 21(2), 39–52. https://doi.org/10.18273/revuin.v21n2-2022004

Resumen

En la presente investigación se estudiaron los efectos del contenido de fibra (20, 30 y 40 wt %) y el tratamiento térmico de recocido sobre las propiedades térmicas del material biocompuesto formado por una matriz polimérica de polipropileno isotáctico (iPP) reforzada con fibras cortas de bambú (PP/FB). El agente de acople fue iPP con injertos de moléculas de anhídrido maleico (MAPP). Se empleó la técnica de calorimetría diferencial de barrido (DSC) para determinar la temperatura de fusión (Tm), la temperatura de cristalización (Tc) y el grado de cristalinidad (Xc) de los biocompuestos. La temperatura de fusión del PP puro no se afectó de manera significativa por la presencia de las fibras de bambú; sin embargo, el grado de cristalinidad del PP aumentó con el contenido de fibra. El tratamiento térmico de recocido provocó un aumento de la Tm del PP puro y del PP/FB. El compuesto con 20 wt% de contenido de fibra (PP/20F) recocido alcanzó el mayor Xc (37,47 %). La Tc del polipropileno aumentó con la presencia de las fibras, y el compuesto PP/20F alcanzó el mayor valor (115 °C). También, se realizó el estudio de la Tm de los biocompuestos en estado amorfo, y se obtuvo que la muestra con un contenido de fibra de 30 wt% presentó un pico endotérmico a una temperatura aproximada de 168 °C.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. D. Rajak, D. Pagar, P. Menezes, E. Linul, “Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications”, Polymers, vol. 11, no. 10, p. 1667, 2019, doi: https://doi.org/10.3390/polym11101667
  2. P. Lokesh, T. S. A. Surya Kumari, R. Gopi, G. Babu Loganathan, “A study on mechanical properties of bamboo fiber reinforced polymer composite”, Mater. Today:. Proc., vol. 22, pp. 897-903, 2020, doi: https://doi.org/10.1016/j.matpr.2019.11.100
  3. K. Anbukarasi, K. Anbukarasi, S. Kalaiselvam, S. Kalaiselvam, “Thermal and mechanical behaviors of biorenewable fibers-based polymer composites”, en Handbook of Composites from Renewable Materials, Beverly, MA 01915, USA: Scrivener Publishing LLC, 2017, pp. 491-519, doi: https://doi.org/10.1002/9781119441632.ch81
  4. A. Orue, J. Anakabe, A. M. Zaldua-Huici, A. Eceiza, A. Arbelaiz, “Preparation and characterization of composites based on poly(lactic acid)/poly(methyl methacrylate) matrix and sisal fiber bundles: The effect of annealing process”, J. Thermoplast. Compos. Mater., p. 089270572093078, 2020, doi: https://doi.org/10.1177/0892705720930780
  5. T. Nishino, “Preparation, microstructure, and properties of biofibers”, en Polym. Compos., Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 2013, pp. 109-131, doi: https://doi.org/10.1002/9783527674220.ch3
  6. J. Girones, L. T. T. Vo, J.-M. Haudin, L. Freire, P. Navard, “Crystallization of polypropylene in the presence of biomass-based fillers of different compositions”, Polymer, vol. 127, pp. 220-231, 2017, doi: https://dx.doi.org/10.1016/j.polymer.2017.09.006
  7. J.V. Montesdeoca-Contreras, C.A. Paltán-Zhingre, T.F. Muñoz-Cuenca, J.I. Fajardo-Seminario, L.M. López-López, D.R. Lasso-Lazo, “Study of natural fibers as filler in a polymeric matrix to make environment friendly materials”, en 2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), St. Petersburg, Russia, 2015, pp. 332-335, doi: https://doi.org/10.1109/EIConRusNW.2015.7102292
  8. P. Chaowana, “Bamboo: an alternative raw material for wood and wood-based composites”, Journal of Materials Science Research, vol. 2, no. 2, pp. 90-102, 2013, doi: https://doi.org/10.5539/jmsr.v2n2p90
  9. H. Sakaray, N.V. Vamsi Krishna Togati, I.V. Ramana Reddy, “Investigation on properties of bamboo as reinforcing material in concrete”, International Journal of Engineering Research and Applications, vol. 2, no. 1, pp. 77-83, 2012, Disponible en: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.299.5791&rep=rep1&type=pdf
  10. L. Osorio, E. Trujillo, A.W. Van Vuure, I. Verpoest, “Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites”, J. Reinf. Plast. Compos., vol. 30, no. 5, pp. 396-408, 2011, doi: https://doi.org/10.1177/0731684410397683
  11. X. Londoño, G.C. Camayo, N.M. Riaño, Y. López, “Characterization of the anatomy of Guadua angustifolia (Poaceae: Bambusoideae) culms”, Bamboo Science and Culture: The Journal of the American Bamboo Society, vol. 16, no. 1, pp. 18-31, 2002.
  12. W. Liese, The Anatomy of Bamboo Culms. Boston, USA: Brill, Academic Publishers, 1998, doi: https://doi.org/10.1163/9789004502468
  13. A. Ashori, S. Sheshmani, F. Farhani, “Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes”, Carbohydr. Polym., vol. 92, no. 1, pp. 865-871, 2013, doi: https://doi.org/10.1016/j.carbpol.2012.10.010
  14. N. Nayak, H.N. Reddappa, R. Suresh, R. Kumar, “The effect of reinforcing sisal fibers on the mechanical and thermal properties of polypropylene composites”, J. Mater. Environ. Sci., vol. 10, no. 12, pp. 1238-1249, 2019.
  15. Y. Wang, L. Cheng, X. Cui, W. Guo, “Crystallization behavior and properties of glass fiber reinforced polypropylene composites”, Polymers, vol. 11, no. 7, p. 1198, 2019, doi: https://doi.org/10.3390/polym11071198
  16. N. Z. M. Zuhudi, K. Jayaraman, R. J. T. Lin, “Mechanical, Thermal and Instrumented Impact Properties of Bamboo Fabric-Reinforced Polypropylene Composites”, Polym. Polym. Compos., vol. 24, no. 9, pp. 755-766, 2016, doi: https://doi.org/10.1177/096739111602400912
  17. C.-Y. Hsu, T.-C. Yang, T.-L. Wu, K.-C. Hung, J.-H. Wu, “The influence of bamboo fiber content on the non-isothermal crystallization kinetics of bamboo fiber-reinforced polypropylene composites (BPCs)”, Holzforschung, vol. 72, no. 4, pp. 329-336, 2018.
  18. S. Ying, C. Wang, Q. Lin, “Effects of heat treatment on the properties of bamboo fiber/polypropylene composites”, Fibers Polym., vol. 14, no. 11, pp. 1894-1898, 2013, doi: https://doi.org/10.1007/s12221-013-1894-5
  19. J. Follrich, U. Müller, W. Gindl, “Effects of thermal modification on the adhesion between spruce wood (Picea abies Karst.) and a thermoplastic polymer”, Holz als Roh- und Werkstoff, vol. 64, no. 5, pp. 373-376, 2006, doi: https://dx.doi.org/10.1007/s00107-006-0107-y
  20. D. Ferrer-Balas, M. L. Maspoch, A. B. Martínez, O. O. Santana, “Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films”, Polymer, vol. 42, no. 4, pp. 1697-1705, 2001, doi: https://doi.org/10.1016/S0032-3861(00)00487-0
  21. Y. Mi, X. Chen, Q. Guo, “Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology”, J. Appl. Polym. Sci., vol. 64, no. 7, pp. 1267-1273, 1998, doi: https://doi.org/10.1002/(SICI)1097-4628(19970516)64:7<1267::AID-APP4>3.0.CO;2-H
  22. M. Rodríguez, “Evaluación de materiales compuestos por inyección a partir de fibras procedentes de la biomasa de maíz (Zea mays L.) y polipropileno”, tesis doctoral, Universidad de Girona, 2014.
  23. Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics - Part 1: Standard method, ISO 1133-1:2011, 2011.
  24. Standard Test Method for Tensile Properties of Plastics, ASTM D638-03, 2003, doi: https://doi.org/10.1520/D0638-03
  25. E. Blanco, J. Fajardo, E. Carrasquero, C. Urbina, J. Balbino León, “Estudio de las propiedades a tensión de un material biocompuesto reforzado con haces de fibras cortas de bambú”, Rev. UIS Ing., vol. 19, no. 3, pp. 163-175, 2020, doi: https://doi.org/10.18273/revuin.v19n3-2020016
  26. R. H. Glaser, L. Mandelkern, “On the fractionation of homopolymers during crystallization from the pure melt”, J. Polym. Sci., Part B: Polym. Phys., vol. 26, no. 2, pp. 221-234, 1988, doi: https://doi.org/10.1002/polb.1988.090260201
  27. S.-Y. Lee, I.-A. Kang, B.-S. Park, G.-H. Doh, B.-D. Park, “Effects of Filler and Coupling Agent on the Properties of Bamboo Fiber-Reinforced Polypropylene Composites”, J. Reinf. Plast. Compos., vol. 28, no. 21, pp. 2589-2604, 2008, doi: https://doi.org/10.1177/0731684408094070
  28. S. K. Nayak, S. Mohanty, S. K. Samal, “Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites”, Materials Science and Engineering: A, vol. 523, no. 1-2, pp. 32-38, 2009, doi: https://doi.org/10.1016/j.msea.2009.06.020
  29. J. Lisperguer, X. Bustos, Y. Saravia, C. Escobar, and H. Venegas, “Efecto de las características de harina de madera en las propiedades físico-mecánicas y térmicas de polipropileno reciclado”, Maderas. Cienc. tecnol., vol. 15, no. 3, pp. 321-336, 2013, doi: https://doi.org/10.4067/S0718-221X2013005000025
  30. R. Young, P. Lovell, Introduction to Polymers. London, UK: Chapman & Hall, 2011.
  31. S. Caveda, “Copolímeros y terpolímeros de polipropileno: influencia de la estructura molecular, las condiciones de cristalización y la adición de un beta-nucleante en las propiedades macroscópicas”, tesis doctoral, Universidad Rey Juan Carlos, 2012.
  32. C. Marco, C. Blancas, “Transiciones de fase en polipropileno isotáctico de reactor y de reología controlada, nucleados en ácido pimélico, bajo cristalización dinámica”, Revista Iberoamericana de Polímeros, vol. 7, no. 1, pp. 43-66, 2006.
  33. J. Fabra, M. Amparo, “Caracterización de polipropilenos técnicos modificados con talco para su uso en parachoques”, trabajo de fin de grado, Universidad Politécnica de Valencia, 2014.