Vol. 21 Núm. 2 (2022): Revista UIS Ingenierías
Artículos

Obtención de biodiésel por transesterificación in situ a partir de semillas de Jatropha curcas L.

Edward Enrique Gomez-Delgado
Universidad de Buenos Aires
Debora Alcida Nabarlatz
Universidad Industrial de Santander
Biografía
Fredy Augusto Avellaneda-Vargas
Universidad Industrial de Santander

Publicado 2022-03-15

Palabras clave

  • Biocombustibles,
  • Biodiésel,
  • Transesterificación in-situ,
  • Jatropha Curcas L.,
  • bioenergía,
  • combustible,
  • diseño experimental,
  • extracción reactiva,
  • FAME,
  • superficie de respuesta
  • ...Más
    Menos

Cómo citar

Gomez-Delgado, E. E. ., Nabarlatz, D. A. ., & Avellaneda-Vargas, F. A. (2022). Obtención de biodiésel por transesterificación in situ a partir de semillas de Jatropha curcas L. Revista UIS Ingenierías, 21(2), 21–38. https://doi.org/10.18273/revuin.v21n2-2022003

Resumen

Una desventaja del uso de biodiésel es su precio, debido a los altos costos de la materia prima y al acondicionamiento del aceite requerido para obtenerlo por medio de una transesterificación tradicional, lo que le impide alcanzar precios más accesibles y dificulta su competitividad con el diésel de petróleo. Por esta razón, se investigó una alternativa para la obtención de biodiésel mediante transesterificación in situ o extracción reactiva (ER) a partir de semillas de Jatropha curcas L. Con esta alternativa en auge, que no compite con el mercado alimenticio, se busca reducir etapas en el proceso de producción y así disminuir costos de operación respecto al método y aceites convencionales. Se determinó la influencia de la temperatura, concentración másica de catalizador (g NaOH/g aceite) y relación molar metanol:aceite, con el fin de maximizar el rendimiento y la concentración de FAME del biodiésel obtenido, mediante un diseño experimental central compuesto (DCC) con método de superficie de respuesta. Se encontró que las condiciones más apropiadas para la obtención de biodiésel por transesterificación in situ fueron una temperatura de reacción de 44 °C, con una concentración másica de catalizador respecto al aceite de 1,2 g NaOH/100 g aceite y una relación molar metanol:aceite de 135:1, con presencia de hexano, manteniendo constantes la velocidad de agitación (635 rpm) y el tiempo de reacción (3 h). En estas condiciones, se alcanza un rendimiento de 71,99 % p/p (g biodiésel/g aceite) y un contenido de FAME del 90,36 % p/p (g FAME/g biodiésel). Los resultados de este estudio establecen las bases para una alternativa al proceso tradicional que no necesita las etapas de extracción y pretratamiento de los aceites utilizados como materia prima, además de disminuir los lavados necesarios en el proceso convencional, que incrementan los costos de dicho proceso industrial e impactan en el medioambiente.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. S. N. Gebremariam, J. M. Marchetti, “Economics of biodiesel production: Review,” Energy Conversion and Management, vol. 168. pp. 74-84, 2018, doi: https://doi.org/10.1016/j.enconman.2018.05.002
  2. S. Thapa, N. Indrawan, P. R. Bhoi, “An overview on fuel properties and prospects of Jatropha biodiesel as fuel for engines,” Environmental Technology and Innovation, vol. 9, pp. 210-219, 2018, doi: https://doi.org/10.1016/j.eti.2017.12.003
  3. J. O. Virgínio e Silva, M. F. Almeida, M. da Conceição Alvim Ferraz, J. M. Dias, “Integrated production of biodiesel and bioethanol from sweet potato,” Renewable Energy, vol. 124, pp. 114–120, 2018, doi: https://doi.org/10.1016/j.renene.2017.07.052
  4. I. Ambat, V. Srivastava, M. Sil-lanpää, “Recent advancement in bio-diesel production methodologies using various feedstock: A review,” Renewable and Sustainable Energy Reviews, vol. 90. pp. 356-369, 2018. doi: https://doi.org/10.1016/j.rser.2018.03.069
  5. S. Sharma, A. Kundu, S. Basu, N. P. Shetti, T. M. Aminabhavi, “Sustainable environmental management and related biofuel technologies,” Journal of Environmental Manage-ment, vol. 273, p. 111096, 2020, doi: https://doi.org/10.1016/j.jenvman.2020.111096
  6. Unidad de Planeación Minero-Energética UPME, “Proyección de la demanda de energía eléctrica y gas natural en Colombia 2021-2035,” Bogotá, 2020.
  7. A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, S. Mekhilef, “A com-prehensive review on biodiesel as an alternative energy resource and its characteristics,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 2070-2093, 2012, doi: https://doi.org/10.1016/j.rser.2012.01.003
  8. S. Das, “The National Policy of bio-fuels of India – A perspective,” Energy Policy, vol. 143, p. 111595, 2020, doi: https://doi.org/10.1016/j.enpol.2020.111595
  9. D. Andrey, H. Susa, “Analysis of the power and torque performance of a diesel engine operating with palm biodiesel blends,” Ingeniería, vol. 25, no. 3, 2020, doi: https://doi.org/10.14483/23448393.15676
  10. A. E. F. Abomohra, M. Elsayed, S. Esakkimuthu, M. ElSheekh, D. Hanelt, “Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives,” Progress in Energy and Combustion Science, vol. 81, p. 100868, 2020, doi: https://doi.org/10.1016/j.pecs.2020.100868
  11. I. Amalia Kartika, M. Yani, D. Ariono, P. Evon, L. Rigal, “Biodiesel production from jatropha seeds: Solvent extraction and in situ transesterification in a single step,” Fuel, vol. 106, pp. 111-117, 2013, doi: https://doi.org/10.1016/j.fuel.2013.01.021
  12. S. K. Duran, “A review on oil extraction and biofuels production from various materials,” Materials Today: Proceedings, vol. 26, no. 2, pp. 261-265, 2019, doi: https://doi.org/10.1016/j.matpr.2019.11.223
  13. F. H. Kasim and A. P. Harvey, “Influence of various parameters on reactive extraction of Jatropha curcas L. for biodiesel production,” Chemical Engineering Journal, vol. 171, no. 3, pp. 1373-1378, 2011, doi: https://doi.org/10.1016/j.cej.2011.05.050
  14. A. A. Abou Kheira, N. M. M. Atta, “Response of Jatropha curcas L. to water deficit: Yield, water use efficiency and oilseed characteristics,” Biomass and Bioenergy, vol. 33, no. 10, pp. 1343-1350, 2009, doi: https://doi.org/10.1016/j.biombioe.2008.05.015
  15. X. Denga, J. Han, F. Yiin, “Net Energy, CO2 Emission and Land based Cost-Benefit Analyses of Jatropha Biodiesel: A case study of the Panzhihua Region of Sichuan Province in China,” Energies, vol. 5, pp. 2150–2164, 2012.
  16. S. H. Shuit, K. T. Lee, A. H. Kamaruddin, S. Yusup, “Reactive extraction and in situ esterification of Jatropha curcas L. seeds for the production of biodiesel,” Fuel, 2010, doi: https://doi.org/10.1016/j.fuel.2009.07.011
  17. N. Tuntiwiwattanapun, P. Usapein, C. Tongcumpou, “The energy usage and environmental impact assessment of spent coffee grounds biodiesel production by an in situ transesterification process,” Energy for Sustainable Development, vol. 40, pp. 50–58, 2017, doi: https://doi.org/10.1016/j.esd.2017.07.002
  18. B. Kim et al., “Simplifying biodiesel production from microalgae via wet in situ transesterification: A review in current research and future prospects,” Algal Research, vol. 41, no. November 2018, p. 101557, 2019, doi: https://doi.org/10.1016/j.algal.2019.101557
  19. A. Martínez, G. E. Mijangos, I. C. Romero Ibarra, R. Hernández Altamirano, V. Y. Mena Cervantes, “In situ transesterification of Jatropha curcas L. seeds using homogeneous and heterogeneous basic catalysts,” Fuel, vol. 235, no. July 2018, pp. 277-287, 2019, doi: https://doi.org/10.1016/j.fuel.2018.07.082
  20. Y. Liu, H. Lu, W. Jiang, D. Li, S. Liu, B. Liang, “Biodiesel production from crude jatropha curcas L. oil with trace acid catalyst,” Chinese Journal of Chemical Engineering, vol. 20, no. 4, pp. 740-746, 2012, doi: https://doi.org/10.1016/S1004-9541(11)60243-7
  21. A. Martínez-Silveira, R. Villarreal, G. Garmendia, C. Rufo, S. Vero, “Process conditions for a rapid in situ transesterification for biodiesel production from oleaginous yeasts,” Electronic Journal of Biotechnology, vol. 38, pp. 1-9, 2019, doi: https://doi.org/10.1016/j.ejbt.2018.11.006
  22. J. Park, B. Kim, J. W. Lee, “In situ transesterification of wet spent coffee grounds for sustainable biodiesel production,” Bioresource Technology, vol. 221, pp. 55-60, 2016, doi: https://doi.org/10.1016/j.biortech.2016.09.001
  23. G. Hincapié, F. Mondragón, and D. López, “Conventional and in situ transesterification of castor seed oil for biodiesel production,” Fuel, vol. 90, no. 4, pp. 1618-1623, 2011, doi: https://doi.org/10.1016/j.fuel.2011.01.027
  24. B. Chidambaranathan, S. Gopinath, R. Aravindraj, A. Devaraj, S. Gokula Krishnan, J. K. S. Jeevaananthan, “The production of biodiesel from castor oil as a potential feedstock and its usage in compression ignition Engine: A comprehensive review,” Materials Today: Proceedings, vol 33, no. 1, pp 84-92, 2020, doi: https://doi.org/10.1016/j.matpr.2020.03.205
  25. J. Huang, H. Xiao, X. Yang, F. Guo, X. Hu, “Effects of methanol blending on combustion characteristics and various emissions of a diesel engine fueled with soybean biodiesel,” Fuel, vol. 282, no. July, p. 118734, 2020, doi: https://doi.org/10.1016/j.fuel.2020.118734
  26. M. N. Siddiquee, S. Rohani, “Experimental analysis of lipid extraction and biodiesel production from wastewater sludge,” Fuel Processing Technology, vol. 92, no. 12, pp. 2241-2251, 2011, doi: https://doi.org/10.1016/j.fuproc.2011.07.018
  27. O. D. Samuel and O. U. Dairo, “A Critical Review of In-situ Transesterification Process for Biodiesel Production,” The pacific journal of science and technology, vol. 13, no. 2, 2012.
  28. A. W. Go, T. Y. N. Pham, Y. H. Ju, R. C. Agapay, A. E. Angkawijaya, K. L. Quijote, “Extraction of lipids from posthydrolysis spent coffee grounds for biodiesel production with hexane as solvent: Kinetic and equilibrium data,” Biomass and Bioenergy, vol. 140, no. February, p. 105704, 2020, doi: https://doi.org/10.1016/j.biombioe.2020.105704
  29. F. Avellaneda, “Producción y caracterización de biodiesel de palma y de aceite reciclado mediante un proceso batch y un proceso continuo con un reactor helicoidal,” Universitatrovira i Virgili, 2010.
  30. S. Y. Lee, S. J. Park, “A review on solid adsorbents for carbon dioxide capture,” Journal of Industrial and Engineering Chemistry, vol. 23, pp. 1-11, 2015, doi: https://doi.org/10.1016/j.jiec.2014.09.001
  31. M. Y. Koh, T. I. Tinia, “A review of biodiesel production from Jatropha curcas L. oil,” Renewable and Sustainable Energy Reviews, vol. 15, no. 5. pp. 2240-2251, 2011, doi: https://doi.org/10.1016/j.rser.2011.02.013
  32. P. Verma, M. Sharma, “Review of process parameters for biodiesel production from different feedstocks,” Renewable and Sustainable Energy Reviews, vol. 62, pp. 1063-1071, 2016.
  33. H. Jaliliannosrati, N. A. S. Amin, A. Talebian Kiakalaieh, I. Noshadi, “Microwave assisted biodiesel pro-duction from Jatropha curcas L. seed by two step in situ process: Optimization using response surface methodology,” Bioresource Technology, vol. 136, pp. 565-573, 2013, doi: https://doi.org/10.1016/j.biortech.2013.02.078
  34. M. R. Sayed et al., “Synthesis of advanced MgAlLDH based geopolymer as a potential catalyst in the conversion of waste sunflower oil into biodiesel: Response surface studies,” Fuel, vol. 282, no. July, p. 118865, 2020, doi: https://doi.org/10.1016/j.fuel.2020.118865
  35. P. Dey, S. Ray, A. Newar, “De fining a waste vegetable oil-biodiesel based diesel substitute blend fuel by response surface optimization of density and calorific value,” Fuel, vol. 283, no. June 2020, p. 118978, 2021, doi: https://doi.org/10.1016/j.fuel.2020.118978
  36. C. S. Latchubugata, R. V. Kondapaneni, K. K. Patluri, U. Virendra, S. Vedantam, “Chemical Engineering Research and Design Kinetics and optimization studies using Response Surface Methodology in biodiesel production using heterogeneous catalyst,” Chemical Engineering Research and Design, vol. 135, pp. 129-139, 2018, doi: https://doi.org/10.1016/j.cherd.2018.05.022
  37. M. Tongroon, A. Suebwong, M. Kananont, J. Aunchaisri, N. Chollacoop, “High quality jatropha biodiesel (H-FAME) and its application in a common rail diesel engine,” Renewable Energy, vol. 113, pp. 660-668, 2017, doi: https://doi.org/10.1016/j.renene.2017.06.006
  38. S. Hamdan, W. Chong, J. H. Ng, C. Chong, S. Rajoo, “A study of the tribological impact of biodiesel dilution on engine lubricant properties,” Process Safety and Environmental Protection, vol. 112, pp. 288-297, 2017.
  39. N. Zainal, N. Zulkifli, M. Gulzar, H. Masjuki, “A review on the chemistry, production and technological potential of bio based lubricants,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 80-102, 2018, doi: https://doi.org/10.1016/j.rser.2017.09.004
  40. M. Said, A. Elsayed, “The use of palm oil fatty acid methyl ester as a base fluid for a flat rheology high performance drilling fluid,” Journal of Petroleum Science and Engineering, vol. 166, pp. 969-983, 2018.
  41. J. McNutt, H. Quan, “Development ob biolubricants from vegetable oils via chemical modification,” Journal of Industrial and Engineering Chemistry, vol. 36, pp. 1-12, 2016, doi: https://doi.org/10.1016/j.jiec.2016.02.008
  42. R. Caenn, H. Darley, R. George, R. Gray, Compossition and properties of Drilling and Completion fluids. USA: Gulf professional publishing, 2016, doi: https://doi.org/10.1016/B978-0-12-804751-4.00001-8
  43. S. Pradhan, C. S. Madankar, P. Mohanty, S. N. Naik, “Optimization of reactive extraction of castor seed to produce biodiesel using response surface methodology,” Fuel, vol. 97, pp 848-855, 2012, doi: https://doi.org/10.1016/j.fuel.2012.02.052
  44. W. N. W. A. Rashid, Y. Uemura, K. Kusakabe, N. B. Osman, B. Abdullah, “Synthesis of Biodiesel from Palm Oil in Capillary Millichannel Reactor: Effect of Temperature, Methanol to Oil Molar Ratio, and KOH Concentration on FAME Yield,” Procedia Chemistry, vol. 9, pp. 165-171, 2014, doi: https://doi.org/10.1016/j.proche.2014.05.020
  45. V. Aslan, T. Eryilmaz, “Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH,” Energy, vol. 209, p. 118386, 2020, doi: https://doi.org/10.1016/j.energy.2020.118386
  46. G. Knothe and K. Steidley, “The effect of metals and metal oxides on biodiesel oxidative stability from promotion to inhibition,” Fuel Processing Technology, vol. 177, pp. 75-80, 2018.
  47. E. A. Hernández, G. Sánchez-Reyna, J. Ancheyta, “Evaluation of mixing rules to predict viscosity of petrodiesel and biodiesel blends,” Fuel, vol. 283, no. June 2020, p. 118941, 2021, doi: https://doi.org/110.1016/j.fuel.2020.118941
  48. M. Ghiasy Oskoee, H. Hatterman Valenti, E. Monono, and M. Agha Alikhani, “Blessed thistle a promising species on North Dakota, USA marginal lands: Agronomic productivity, oil properties and bio diesel potential,” Ecological Engineering, vol. 155, no. 2019, p. 105908, 2020, doi: https://doi.org/110.1016/j.ecoleng.2020.105908