Aplicación del algoritmo de optimización por enjambre de salpas para la estimación de parámetros en transformadores monofásicos empleando medidas de tensión y corriente
Publicado 2022-05-05
Palabras clave
- estimación paramétrica en transformadores,
- circuito equivalente,
- transformadores monofásicos,
- modelo de programación no lineal,
- algoritmo de optimización por enjambre de salpas
- mediciones de tensión y corriente,
- error medio cuadrático,
- optimización metaheurística,
- técnicas de comparación,
- desempeño numérico ...Más
Cómo citar
Derechos de autor 2022 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
En este artículo se presenta una metodología de solución para la estimación de parámetros de transformadores monofásicos considerando las mediciones de tensión y corriente; para ello se emplea un modelo de optimización no lineal. Este modelo se basa en minimizar el error cuadrático medio entre las variables de tensión y corriente medidas y calculadas. Este modelo de programación no lineal se resuelve mediante la implementación del algoritmo de optimización de las salpas. Los resultados obtenidos demuestran que el método de optimización propuesto permite reducir el error entre la estimación de las variables medidas y calculadas; además, el método de optimización propuesto mejora los resultados presentados por otros métodos de optimización reportados en la literatura especializada. Todas las simulaciones se realizaron en el entorno de programación MATLAB.
Descargas
Referencias
- T. R. Chaves, M. A. I. Martins, K. A. Martins, A. F. de Macedo, and S. de Francisci, “Application Study in the Field of Solutions for the Monitoring Distribution Transformers of the Overhead Power Grid,” Energies, vol. 14, no. 19, p. 6072, 2021, doi: https://doi.org/10.3390/en14196072
- S. Guarín, S. Velarde, E. Castaño, A. Molina-Cabrera, “Construction and simulation of a planar transformer prototype,” Transactions on Energy Systems and Engineering Applications, vol. 2, no. 2, pp. 1-7, 2021, doi: https://doi.org/10.32397/tesea.vol2.n2.1
- H. Besharatifard, S. Hasanzadeh, E. Heydarian Forushani, H. H. Alhelou, P. Siano, “Detection and Analysis of Partial Discharges in OilImmersed Power Transformers Using Low Cost Acoustic Sensors,” Applied Sciences, vol. 12, no. 6, p. 3010, 2022, doi: https://doi.org/10.3390/app12063010
- S. Bhattacharya, “Transforming the transformer,” IEEE Spectrum, vol. 54, no. 7, pp. 38-43, 2017, doi: https://doi.org/10.1109/MSPEC.2017.7951721
- M. Tahir, S. Tenbohlen, “A Comprehensive Analysis of Windings Electrical and Mechanical Faults Using a High Frequency Model,” Energies, vol. 13, no. 1, p. 105, 2019, doi: https://doi.org/10.3390/en13010105
- J. Gao, J. Gao, Q. Guo, L. Li, “Research on operation status and fault deduction system design of transformer in large sports venues,” Energy Reports, vol. 8, pp. 539-546, 2022, doi: https://doi.org/10.3390/en13010105
- B. Zeng, J. Guo, W. Zhu, Z. Xiao, F. Yuan, S. Huang, “A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM,” Energies, vol. 12, no. 21, p. 4170, 2019, doi: https://doi.org/10.3390/en12214170
- S. Y. Bocanegra, O. D. Montoya, A. Molina-Cabrera, “Estimación de parámetros en transformadores monofásicos empleando medidas de tensión y corriente,” Revista UIS Ingenierías, vol. 19, no. 4, pp. 63-75, may 2020, doi: https://doi.org/10.18273/revuin.v19n4-2020006
- S. Y. Bocanegra, O. D. Montoya, A. Molina, “Sine-cosine optimization approach applied to the parametric estimation in single phase transformers by considering voltage and current measures,” Dyna, vol. 88, no. 219, pp. 19-27, 2021, doi: https://doi.org/10.15446/dyna.v88n219.93670
- A. Tokić, I. Uglešić, G. Štumberger, “Simulations of Transformer Inrush Current by Using BDF-Based Numerical Methods,” Mathematical Problems in Engineering, vol. 2013, pp. 1-10, 2013, doi: https://doi.org/10.1155/2013/215647
- M. Ćalasan, D. Mujičić, V. Rubežić, M. Radulović, “Estimation of Equivalent Circuit Parameters of Single-Phase Transformer by Using Chaotic Optimization Approach,” Energies, vol. 12, no. 9, p. 1697, 2019, doi: https://doi.org/10.1155/2013/215647
- M. I. Abdelwanis, A. Abaza, R. A. El-Sehiemy, M. N. Ibrahim, H. Rezk, “Parameter Estimation of Electric Power Transformers Using Coyote Optimization Algorithm With Experimental Verification,” IEEE Access, vol. 8, pp. 50 036-50 044, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2978398
- R. Kazemi, S. Jazebi, D. Deswal, F. de Leon, “Estimation of Design Parameters of SinglePhase Distribution Transformers From Terminal Measurements,” IEEE Transactions on Power Delivery, vol. 32, no. 4, pp. 2031-2039, 2017, doi: https://doi.org/10.1109/TPWRD.2016.2621753
- M. Calasan, A. Jovanovic, V. Rubezic, D. Mujicic,
- A. Deriszadeh, “Notes on parameter estimation for single-phase transformer,” IEEE Transactions on Industry Applications, pp. 1-1, 2020, doi: https://doi.org/10.1109/TIA.2020.2992667
- S. Padma, S. Subramanian, “Parameter estimation of single phase core type transformer using bacterial foraging algorithm,” Engineering, vol. 2, no. 11, p. 917, 2010, doi: http://dx.doi.org/10.4236/eng.2010.211115
- M. I. Mossad, M. Azab, A. Abu-Siada, “Transformer parameters estimation from nameplate data using evolutionary programming techniques,” IEEE transactions on power delivery, vol. 29, no. 5, pp. 2118-2123, 2014, doi: https://doi.org/10.1109/TPWRD.2014.2311153
- D. Bhowmick, M. Manna, S. K. Chowdhury, “Estimation of equivalent circuit parameters of transformer and induction motor from load data,” IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2784-2791, 2018, doi: https://doi.org/10.1109/TIA.2018.2790378
- Z. Yilmaz, M. Oksar, F. Basciftci, “Multiobjective artificial bee colony algorithm to estimate transformer equivalent circuit parameters,” Periodicals of Engineering and Natural Sciences, vol. 5, no. 3, 2017, doi: http://dx.doi.org/10.21533/pen.v5i3.103
- C. A. Arenas-Acuña, J. A. Rodríguez-Contreras, O. D. Montoya, E. Rivas-Trujillo, “Blackhole optimization applied to the parametric estimation in distribution transformers considering voltage and current measures,” Computers, vol. 10, no. 10, p. 124, 2021, doi: https://doi.org/10.3390/computers10100124
- H. A. Illias, K. Mou, A. Bakar, “Estimation of transformer parameters from nameplate data by imperialist competitive and gravitational search algorithms,” Swarm and Evolutionary Computation, vol. 36, pp. 18-26, 2017, doi: https://doi.org/10.1016/j.swevo.2017.03.003
- D. G. Gracía-Velásquez, A. S. Morales-Rodríguez, O. D. Montoya, “Application of the Crow Search Algorithm to the Problem of the Parametric Estimation in Transformers Considering Voltage and Current Measures,” Computers, vol. 11, no. 1, p. 9, 2022, doi: https://doi.org/10.3390/computers11010009
- S. J. Chapman, Electric machinery fundamentals.
- McGraw-Hill, 2004.
- S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, “Salp swarm algorithm: A bio-inspired optimizer for engineering design problems,” Advances in Engineering Software, vol. 114, pp. 163-191, 2017, doi: https://doi.org/10.1016/j.advengsoft.2017.07.002
- A. E. Hegazy, M. Makhlouf, G. S. El-Tawel, “Improved salp swarm algorithm for feature selection,” Journal of King Saud University – Computer and Information Sciences, vol. 32, no. 3, pp. 335-344, 2020, doi: https://doi.org/10.1016/j.jksuci.2018.06.003
- R. A. Ibrahim, A. A. Ewees, D. Oliva, M. Abd Elaziz, and S. Lu, “Improved salp swarm algorithm based on particle swarm optimization for feature selection,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 8, pp. 3155-3169, 2019, doi: https://doi.org/10.1007/s12652-018-1031-9
- H. Zhang, T. Liu, X. Ye, A. A. Heidari, G. Liang, H. Chen, and Z. Pan, “Differential evolutionassisted salp swarm algorithm with chaotic structure for real-world problems,” Engineering with Computers, 2022, doi: https://doi.org/10.1007/s00366-021-01545-x
- T. A. Jumani, M. Mustafa, W. Anjum, S. Ayub et al., “Salp swarm optimization algorithmbased controller for dynamic response and power quality enhancement of an islanded microgrid,” Processes, vol. 7, no. 11, p. 840, 2019, doi: https://doi.org/10.3390/pr7110840
- J. Montano, A. F. T. Mejía, A. A. Rosales Muñoz, F. Andrade, O. D. Garzín Rivera, J. M. Palomeque, “Salp swarm optimization algorithm for estimating the parameters of photovoltaic panels based on the three-diode model,” Electronics, vol. 10, no. 24, p. 3123, 2021, doi: https://doi.org/10.3390/electronics10243123
- S. B. Chaabane, A. Belazi, S. Kharbech, A. Bouallegue, L. Clavier, “Improved Salp Swarm Optimization Algorithm: Application in Feature Weighting for Blind Modulation Identification,” Electronics, vol. 10, no. 16, p. 2002, 2021, doi: https://doi.org/10.3390/electronics10162002
- S. Baqaruzi and S. T. Kasim, “Comparison of effect
- efficiency and voltage regulation between three-phase transformer winding connections,” Bulletin of Computer Science and Electrical Engineering, vol. 1, no. 2, pp. 54–62, 2020, doi: https://doi.org/10.25008/bcsee.v1i2.1123