Vol. 22 Núm. 3 (2023): Revista UIS Ingenierías
Artículos

Solución práctica para el problema de reconfiguración en redes eléctricas de distribución: un enfoque heurístico constructivo

Oscar Danilo Montoya-Giraldo
Universidad Distrital Francisco José de Caldas
Walter Julián Gil-González
Universidad Tecnológica de Pereira
Alexander Molina-Cabrera
Universidad Tecnológica de Pereira

Publicado 2023-07-22

Palabras clave

  • Algoritmo heurístico constructivo,
  • Solución del flujo de potencia,
  • Redes de distribución radiales y malladas,
  • Concepto de mínima corriente,
  • Algoritmo de ordenamiento nodal

Cómo citar

Montoya-Giraldo, O. D., Gil-González, W. J., & Molina-Cabrera, A. (2023). Solución práctica para el problema de reconfiguración en redes eléctricas de distribución: un enfoque heurístico constructivo. Revista UIS Ingenierías, 22(3), 87–98. https://doi.org/10.18273/revuin.v22n3-2023007

Resumen

El problema de la reconfiguración de redes de distribución eléctrica se aborda en esta investigación mediante la implementación de una solución práctica utilizando un algoritmo heurístico constructivo. La característica más importante del enfoque heurístico propuesto es su bajo esfuerzo de cómputo, pues se requieren pocas soluciones flujo de potencia para resolver el problema de reconfiguración. El algoritmo constructivo comienza su exploración del espacio de solución cerrando todas las líneas de enlace para formar una red de distribución completamente mallada. La línea de distribución con la corriente mínima se abre permanentemente. Se realiza una nueva evaluación del flujo de potencia para el nuevo sistema de distribución y se abre la línea de distribución con la corriente mínima si y solo si esta acción no genera nodos aislados. Este procedimiento se repite hasta que el número de líneas cerradas sea igual al número de nodos menos uno, condición necesaria para mantener una configuración radial. Validaciones numéricas en alimentadores de prueba compuestos por 16, 33, 69, 84, 136 y 415 nodos demuestran que el algoritmo constructivo propuesto encuentra soluciones adecuadas con tiempos de procesamiento mínimos. El enfoque propuesto es práctico para las empresas de distribución, ya que su implementación solo requiere una herramienta de flujo de potencia para redes de distribución que pueda manejar configuraciones radiales y malladas.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. V. Vahidinasab et al., “Overview of Electric Energy Distribution Networks Expansion Planning,” IEEE Access, vol. 8, pp. 34750–34769, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2973455
  2. I. Diaaeldin, S. Abdel Aleem, A. El-Rafei, A. Abdelaziz, A. F. Zobaa, “Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation,” Energies, vol. 12, no. 21, p. 4172, 2019, doi: https://doi.org/10.3390/en12214172
  3. H. Li, H. Cui, C. Li, “Distribution Network Power Loss Analysis Considering Uncertainties in Distributed Generations,” Sustainability, vol. 11, no. 5, p. 1311, 2019, doi: https://doi.org/10.3390/su11051311
  4. S. Mikulski, A. Tomczewski, “Use of Energy Storage to Reduce Transmission Losses in Meshed Power Distribution Networks,” Energies, vol. 14, no. 21, p. 7304, 2021, doi: https://doi.org/10.3390/en14217304
  5. M. Z. Malik et al., “Strategic planning of renewable distributed generation in radial distribution system using advanced MOPSO method,” Energy Reports, vol. 6, pp. 2872–2886, 2020, doi: https://doi.org/10.1016/j.egyr.2020.10.002
  6. M. Lavorato, J. F. Franco, M. J. Rider, R. Romero, “Imposing Radiality Constraints in Distribution System Optimization Problems,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 172–180, 2012, doi: https://doi.org/10.1109/TPWRS.2011.2161349
  7. J. D. Pradilla-Rozo, J. A. Vega-Forero, O. D. Montoya, “Application of the Gradient-Based Metaheuristic Optimizerto Solve the Optimal Conductor Selection Problemin Three-Phase Asymmetric Distribution Networks,” Energies, vol. 16, no. 2, p. 888, 2023, doi: https://doi.org/10.3390/en16020888
  8. A. Zamani, T. Sidhu, A. Yazdani, “A strategy for protection coordination in radial distribution networks with distributed generators,” in IEEE PES General Meeting, 2010, pp. 1–8. doi: https://doi.org/10.1109/PES.2010.5589655
  9. J. Xie, C. Chen, H. Long, “A Loss Reduction Optimization Method for Distribution Network Based on Combined Power Loss Reduction Strategy,” Complexity, vol. 2021, pp. 1–13, 2021, doi: https://doi.org/10.1155/2021/9475754
  10. X. Wang et al., “Research on Reconfiguration of Distribution Network considering Three-Phase Unbalance,” Wirel. Commun. Mob. Comput., vol. 2022, pp. 1–12, 2022, doi: https://doi.org/10.1155/2022/9906100
  11. R. Sirjani, A. Rezaee Jordehi, “Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review,” Renew. Sustain. Energy Rev., vol. 77, pp. 688–694, 2017, doi: https://doi.org/10.1016/j.rser.2017.04.035
  12. , L. A. Gallego Pareja, O. Gómez Carmona, J. M. López-Lezama, “Optimal Placement of Capacitors, Voltage Regulators, and Distributed Generators in Electric Power Distribution Systems,” Ingeniería, vol. 25, pp. 334–354, 2020.
  13. L. Novoa, R. Flores, J. Brouwer, “Optimal renewable generation and battery storage sizing and siting considering local transformer limits,” Appl. Energy, vol. 256, p. 113926, 2019, doi: https://doi.org/10.1016/j.apenergy.2019.113926
  14. R. Chidanandappa, T. Ananthapadmanabha, “Genetic Algorithm Based Network Reconfiguration in Distribution Systems with Multiple DGs for Time Varying Loads,” Procedia Technol., vol. 21, pp. 460–467, 2015, doi: https://doi.org/10.1016/j.protcy.2015.10.023
  15. T. Tran The, D. Vo Ngoc, N. Tran Anh, “Distribution Network Reconfiguration for Power Loss Reduction and Voltage Profile Improvement Using Chaotic Stochastic Fractal Search Algorithm,” Complexity, vol. 2020, pp. 1–15, 2020, doi: https://doi.org/10.1155/2020/2353901
  16. A. E. D. C. Tio, I. B. N. C. Cruz, “A binary formulation of SAIDI for the predictive reliability assessment of radial distribution systems with tie-lines,” in 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2013, pp. 1–6. doi: https://doi.org/10.1109/APPEEC.2013.6837235
  17. O. D. Montoya, W. J. Gil González, L. F. Grisales-Noreña, D. Giral, A. Molina-Cabrera, “On the optimal reconfiguration of radial AC distribution networks using an MINLP formulation: A GAMS-based approach,” Ing. e Investig., vol. 42, no. 2, p. e91192, 2021, doi: https://doi.org/10.15446/ing.investig.91192
  18. V. Vai, S. Suk, R. Lorm, C. Chhlonh, S. Eng, L. Bun, “Optimal Reconfiguration in Distribution Systems with Distributed Generations Based on Modified Sequential Switch Opening and Exchange,” Appl. Sci., vol. 11, no. 5, p. 2146, 2021, doi: https://doi.org/10.3390/app11052146
  19. J. Zhan, W. Liu, C. Y. Chung, J. Yang, “Switch Opening and Exchange Method for Stochastic Distribution Network Reconfiguration,” IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 2995–3007, 2020, doi: https://doi.org/10.1109/TSG.2020.2974922
  20. M. C. O. Borges, J. F. Franco, M. J. Rider, “Optimal Reconfiguration of Electrical Distribution Systems Using Mathematical Programming,” J. Control. Autom. Electr. Syst., vol. 25, no. 1, pp. 103–111, 2014, doi: https://doi.org/10.1007/s40313-013-0070-x
  21. J. Franco, M. Lavorato, M. J. Rider, R. Romero, “An efficient implementation of tabu search in feeder reconfiguration of distribution systems,” in 2012 IEEE Power and Energy Society General Meeting, 2012, pp. 1–8. doi: https://doi.org/10.1109/PESGM.2012.6345048
  22. J. Olamaei, T. Niknam, S. Badali Arefi, “Distribution Feeder Reconfiguration for Loss Minimization Based on Modified Honey Bee Mating Optimization Algorithm,” Energy Procedia, vol. 14, pp. 304–311, 2012, doi: https://doi.org/10.1016/j.egypro.2011.12.934
  23. J. F. Franco, M. J. Rider, M. Lavorato, R. Romero, “A mixed-integer LP model for the reconfiguration of radial electric distribution systems considering distributed generation,” Electr. Power Syst. Res., vol. 97, pp. 51–60, 2013, doi: https://doi.org/10.1016/j.epsr.2012.12.005
  24. H. Ahmadi, J. R. Martí, “Minimum-loss network reconfiguration: A minimum spanning tree problem,” Sustain. Energy, Grids Networks, vol. 1, pp. 1–9, Mar. 2015, doi: https://doi.org/10.1016/j.segan.2014.10.001
  25. A. Davodi, K. Esapour, A. Zare, M.-A. Rostami, “A modified KH algorithm to solve the optimal reconfiguration problem in the presence of distributed generations,” J. Intell. & Fuzzy Syst., vol. 28, no. 1, pp. 383–391, 2015.
  26. I. I. Atteya, H. A. Ashour, N. Fahmi, D. Strickland, “Distribution network reconfiguration in smart grid system using modified particle swarm optimization,” in 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 2016, pp. 305–313. doi: https://doi.org/10.1109/ICRERA.2016.7884556
  27. D. Yodphet, A. Onlam, A. Siritaratiwat, P. Khunkitti, “Electrical distribution system reconfiguration for power loss reduction by the Salp Swarm algorithm,” Int. J. Smart Grid Clean Energy, pp. 156–163, 2019, doi: https://doi.org/10.12720/sgce.8.2.156-163
  28. U. Raut and S. Mishra, “Enhanced Sine–Cosine Algorithm for Optimal Planning of Distribution Network by Incorporating Network Reconfiguration and Distributed Generation,” Arab. J. Sci. Eng., vol. 46, no. 2, pp. 1029–1051, 2021, doi: https://doi.org/10.1007/s13369-020-04808-9
  29. A. M. Helmi, R. Carli, M. Dotoli, H. S. Ramadan, “Efficient and Sustainable Reconfiguration of Distribution Networks via Metaheuristic Optimization,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 1, pp. 82–98, Jan. 2022, doi: https://doi.org/10.1109/TASE.2021.3072862
  30. O. Badran, S. Mekhilef, H. Mokhlis, W. Dahalan, “Optimal reconfiguration of distribution system connected with distributed generations: A review of different methodologies,” Renew. Sustain. Energy Rev., vol. 73, pp. 854–867, 2017, doi: https://doi.org/10.1016/j.rser.2017.02.010
  31. H. Lotfi, A. A. Shojaei, V. Kouhdaragh, I. Sadegh Amiri, “The impact of feeder reconfiguration on automated distribution network with respect to resilience concept,” SN Appl. Sci., vol. 2, no. 9, p. 1590, 2020, doi: https://doi.org/10.1007/s42452-020-03429-z
  32. F. Sheidaei, A. Ahmarinejad, M. Tabrizian, M. Babaei, “A stochastic multi-objective optimization framework for distribution feeder reconfiguration in the presence of renewable energy sources and energy storages,” J. Energy Storage, vol. 40, p. 102775, Aug. 2021, doi: https://doi.org/10.1016/j.est.2021.102775
  33. O. D. Montoya, “Notes on the Dimension of the Solution Space in Typical Electrical Engineering Optimization Problems,” Ingeniería, vol. 27, no. 2, p. e19310, 2022, doi: https://doi.org/10.14483/23448393.19310
  34. O. D. Montoya, W. Gil-González, “On the numerical analysis based on successive approximations for power flow problems in AC distribution systems,” Electr. Power Syst. Res., vol. 187, p. 106454, 2020.
  35. A. Garces, L. Rodriguez-Garcia, “An Approach for Nodal Admittance Matrix Real-Time Estimation on DC Microgrids,” in 2019 IEEE Green Technologies Conference(GreenTech), Apr. 2019, pp. 1–4. doi: https://doi.org/10.1109/GreenTech.2019.8767140
  36. T. Shen, Y. Li, J. Xiang, “A Graph-Based Power Flow Method for Balanced Distribution Systems,” Energies, vol. 11, no. 3, p. 511, 2018, doi: https://doi.org/10.3390/en11030511
  37. S. Ouali, A. Cherkaoui, “An Improved Backward/Forward Sweep Power Flow Method Based on a New Network Information Organization for Radial Distribution Systems,” J. Electr. Comput. Eng., vol. 2020, pp. 1–11, Jan. 2020, doi: https://doi.org/10.1155/2020/5643410
  38. M. Sedighizadeh, M. Dakhem, M. Sarvi, H. H. Kordkheili, “Optimal reconfiguration and capacitor placement for power loss reduction of distribution system using improved binary particle swarm optimization,” Int. J. Energy Environ. Eng., vol. 5, no. 1, p. 73, 2014, doi: https://doi.org/10.1007/s40095-014-0073-9